Ручная плазменная резка
Содержание:
- Технология плазменной резки металла
- Возможности
- Как устроен плазморез
- Особенности работы аппарата
- Строение и принцип работы
- Технологические моменты плазменной резки
- Схема работы плазмореза
- Деталировка агрегата
- Как устроен плазморез?
- Достоинства и недостатки плазменной резки
- Требования к устройству и оснащению плазменных установок
- Переделка из инверторного аппарата
- Конструкция и порядок эксплуатации
Технология плазменной резки металла
Как работает плазменная резка показано на видео. Посмотрев несколько таких уроков можно приступать к самостоятельным пробам. Процесс осуществляется в следующей последовательности:
Разрезаемое изделие выставляется так, чтобы под ним был просвет в несколько сантиметров. Для этого используются подкладки под края, или конструкция устанавливается на край стола, чтобы обрабатываемая часть была над полом.
Разметку линии реза лучше выполнять черным маркером, если работа ведется на нержавеющей стали или алюминии
Когда предстоит разделать «черный» металл, то линию лучше провести тоненьким мелком, который четче виден на темной поверхности.
Важно убедиться, что шланг от горелки не лежит рядом с местом реза. Сильный перегрев может его испортить
Начинающие сварщики могут из-за волнения это не увидеть и повредить оборудование.
Надеваются защитные очки. Если работать предстоит долго, то лучше воспользоваться маской, которая закроет не только глаза, но и все лицо от ультрафиолета.
Если резка будет вестись на подложках выставленных на полу, то следует подложить лист металла, чтобы брызги не испортили покрытие пола.
Перед началом работы необходимо убедиться, что компрессор набрал достаточное давление, а водяные модели разогрели жидкость до нужной температуры.
Запуском кнопки зажигается дуга.
Держать плазмотрон необходимо перпендикулярно разрезаемой поверхности. Допускается небольшой угол отклонения относительно этого положения.
Начало реза лучше производить с края изделия. Если необходимо начать с середины, то желательно просверлить тоненькое отверстие
Это поможет избежать перегрева и впадины в этом месте.
При ведении дуги необходимо соблюдать дистанцию к поверхности в 4 мм.
Для этого важен упор под руки, который осуществляется локтями об стол или об колени.
При ведении реза важно зрительно удостоверяться в появлении просвета на пройденном участке, иначе придется проводить резку повторно.
Когда линия разреза заканчивается, необходимо соблюсти предосторожность, чтобы деталь не упала на ноги.
Отпускание кнопки прекращает горение дуги.
Молотком отбивается тонкий слой шлака по краям реза. Если есть необходимость, то проводится дополнительная зачистка изделия на наждачном круге.
Возможности
Используется аппарат во множестве случаев, на предприятиях и в частных целях. Можно обработать как листы, так и трубы, любую конфигурацию металла. Работа происходит и с чистыми веществами, и со сплавами, даже с тугоплавкими. В статье мы рассказали про основы плазменной резки, область применения и максимальную ширину реза при использовании технологии.
Плазменная резка — вид плазменной обработки материалов, при котором в качестве режущего инструмента вместо резца используется струя плазмы.
Между электродом и соплом аппарата, или между электродом и разрезаемым металлом зажигается электрическая дуга. В сопло подаётся газ под давлением в несколько атмосфер, превращаемый электрической дугой в струю плазмы с температурой от 5000 до 30000 градусов и скоростью от 500 до 1500 м/с. Толщина разрезаемого металла может доходить до 1500 мм. Первоначальное зажигание дуги осуществляется высоковольтным импульсом или коротким замыканием между анодом и катодом в случае косвенной дуги, и форсункой и разрезаемым металлом в случае прямой дуги. Форсунки охлаждаются потоком газа (воздушное охлаждение) или жидкостным охлаждением. Воздушные форсунки как правило надежнее, форсунки с жидкостным охлаждением используются в установках большой мощности и дают лучшее качество обработки.
Используемые для получения плазменной струи газы делятся на активные (кислород, воздух) и неактивные (азот, аргон, водород, водяной пар). Активные газы в основном используются для резки чёрных металлов, а неактивные — цветных металлов и сплавов.
Преимущества плазменной резки:
- обрабатываются любые металлы — черные, цветные, тугоплавкие сплавы и т. д.
- скорость резания малых и средних толщин в несколько раз выше скорости газопламенной резки
- небольшой и локальный нагрев разрезаемой заготовки, исключающий её тепловую деформацию
- высокая чистота и качество поверхности разреза
- безопасность процесса (нет необходимости в баллонах с сжатым кислородом, горючим газом и т. д.)
- возможна сложная фигурная вырезка
- отсутствие ограничений по геометрической форме
- можно использовать для неметаллических изделий.
На чтение: 4 минуты Нет времени?
Что такое плазменная резка металла, технология процесса и критерии подбора аппаратов – об этом пойдёт речь в обзоре редакции HouseChief. Благодаря высокой точности и аккуратности получаемого результата, именно этот способ раскроя металла выходит на первый план. Тем более, на рынке строительных товаров появились бытовые аппараты подобного назначения, доступные непрофессионалам. Как выбрать такой аппарат? По каким критериям различаются модели? Обо всём этом и многом другом – в нашем материале.
Читайте в статье
Как устроен плазморез
- источник питания;
- воздушный компрессор;
- плазменный резак или плазмотрон;
- кабель-шланговый пакет.
Источник питания для аппарата плазменной резки осуществляет подачу на плазмотрон определенной силы тока. Представляет собой инвертор или трансформатор.
Трансформаторы гораздо увесистее, тратят много энергии, но при этом имеют меньшую чувствительность к перепадам напряжения, и с их помощью разрезают заготовки большой толщины.
Плазменный резак считается главным элементом плазмореза. Его основными элементами являются:
- сопло;
- охладитель/изолятор;
- канал, необходимый для подачи сжатого воздуха;
- электрод.
Компрессор требуется для подачи воздуха. Принцип работы плазменной резки предусматривает применение защитных и плазмообразующих газов. Для аппаратов, которые рассчитаны на силу тока до 200 А, применяется только сжатый воздух как для охлаждения, так и для создания плазмы. Они способны разрезать заготовки толщиной в 50 мм.
Кабель-шланговый пакет используется для соединения компрессора, источника питания и плазмотрона. По электрическому кабелю от инвертора или трансформатора начинает поступать ток для возбуждения электрической дуги, а по шлангу осуществляется подача сжатого воздуха, который требуется для возникновения внутри плазмотрона плазмы.
Принцип работы
После того как возникла дежурная дуга, в камеру начинает поступать сжатый воздух. Вырываясь из патрубка, он проходит через электрическую дугу, нагревается, при этом увеличиваясь в объеме в 50 или 100 раз. Кроме того, воздух начинает ионизироваться и перестает быть диэлектриком, приобретая свойства проводить ток.
Сопло плазмотрона, суженное книзу, обжимает воздух, создавая из него поток, которое начинает вырываться оттуда со скоростью 2 – 3 м/с. В этом момент температура воздуха часто достигает 30 тыс. градусов. Именно такой раскаленный ионизированный воздух и является плазмой.
В то время, когда плазма начинает вырываться из сопла, происходит ее соприкосновение с поверхностью обрабатываемого металла, дежурная дуга в этот момент гаснет, а зажигается режущая. Она начинает разогревать заготовку в месте реза. Металл в результате этого плавится и появляется рез. На поверхности разрезаемого металла образуются небольшие частички расплавленного металла, сдуваемые с нее потоком воздуха. Таким образом осуществляется работа плазмотрона.
Преимущества плазменной резки
Работы по резке металла часто осуществляются на стройплощадке, в мастерской или цеху. Можно использовать для этого автоген, но не всех это устраивает. Если объем работ, связанный с резкой металла, слишком большой, а требования, предъявляемые к качеству реза, очень высоки, то следует подумать о том, чтобы использовать плазменный резак, имеющим следующие достоинства:
- Если мощность подобрана правильно, то аппарат плазменной резки позволяет в 10 раз повысить производительность. Такой параметр позволяет плазморезу уступить только промышленной лазерной установке, однако, он значительно выигрывает в себестоимости. Целесообразно с экономической точки зрения применять пламенную резку для металла, имеющего толщину до 50 – 60 мм.
-
Универсальность. С помощью плазменной резки обрабатываются чугун, медь, сталь, алюминий и прочий металл. Необходимо просто выбрать оптимальную мощность и выставить конкретное давление воздуха.
- Высокое качество реза. Аппараты плазменной резки способны обеспечить минимальную ширину реза и кромки без перекаливания, наплывов и грата практически без дополнительной обработки. Кроме того, достаточно важен такой момент, что зона нагрева материала в несколько раз меньше, чем при использовании автогена. А так как термическое воздействие минимально на участке реза, то и деформация от этого вырезанных деталей будет незначительной, даже если они имеют небольшую толщину.
- Не происходит существенного загрязнения окружающей среды. С экономической точки зрения, если имеются большие объемы работ, то плазменная резка гораздо выгоднее кислородной или механической. Во всех остальных случаях учитывают не материалы, а трудоемкость использования.
Недостатки плазменной резки
Недостатки в работе плазменной резки тоже имеются. Первый из них – максимально допустимая толщина реза довольно небольшая, и у самых мощных агрегатов она редко бывает больше 80 – 100 мм.
не должен быть больше 10 – 50 градусов
Кроме того, рабочее оборудование довольно сложное, что делает совершенно невозможным использование двух резаков одновременно, которые подключаются к одному аппарату.
Особенности работы аппарата
При включении аппарата плазменной резки с трансформатора на плазмотрон поступает электрический ток высокого напряжения. Вследствие этого, образуется высокотемпературная электрическая дуга. Поток сжатого воздуха, проходя сквозь дугу, возрастает в объеме на один порядок и становится токопроводящим.
Ионизированный поток газа (плазма), за счет прохождения через сопло, увеличивает свои термодинамические характеристики: скорость возрастает до 800 м/с, а температура до 30 тыс. градусов Цельсия. Электропроводность плазмы сопоставима по значению с электропроводностью обрабатываемого металла.
Скорость резания обратно пропорциональна диаметру сопла плазменной горелки. Для формирования качественной плазменной дуги следует применять тангенциальную или воздушно-вихревую подачу сжатого воздуха.
Особенность режущей дуги состоит в том, что ее действие носит локальный характер: в процессе резания не происходит деформации или нарушения поверхностного слоя обрабатываемого изделия.
Строение и принцип работы
Станок плазменной резки в стандартном исполнении включает:
- сам резак, т.н. плазмотрон;
- воздушный компрессор, отвечающий за поставку воздуха под определённым давлением;
- источник питания, преобразующий 1- и 3-фазный ток в постоянный.
Главный компонент станка для плазменной резки – это плазмотрон. Именно он отвечает за качественные характеристики реза. Плазмотрон состоит из:
- сопла, где образуется режущая струя;
- электрода;
- охладителя.
Помимо этого, имеется расширенная система различных кабелей и трубок. Всё это предназначено для соединения головных компонентов: компрессора, резака, источника питания
Особое внимание уделяется каналу, по которому подаётся воздух с заданным давлением от компрессора до плазмотрона
Портальный станок плазменной резки выделяется наличием рабочего стола определённых размеров, реечного привода, обеспечивающего безлюфтовое движение. Такие станки подразделяются по типам движения портала. Это может быть:
- монопривод;
- двухприводная система;
- сервопривод;
- и даже шаговые двигатели.
Дополнительный функционал предусматривает возможности косого реза и одновременной резки несколькими плазмотронами. Портальные станки считаются наиболее производительными и отличаются наилучшим качеством реза, в результате чего в короткое время окупают свою немалую цену.
Портативное, более мобильное, оборудование для плазменной резки состоит из продольной рамы. На ней имеются рейки, где передвигается каретка. К самой каретке прикреплены плазмотрон и блок ЧПУ. Лист железа крепится к раме, и далее каретка с плазмотроном, перемещаясь, осуществляет раскрой материала. Кстати, портативные станки эффективно справляются не только с металлом, но и с композитами, деревом, полимерами.
Технологические моменты плазменной резки
Понять, как работает плазморез, позволяет последовательное изучение этапов плазменной резки металлов:
- нажимается кнопка розжига, приводящая к началу подачи тока от трансформатора или инвертора к плазмотрону;
- внутри плазмотрона появляется дежурная электродуга с температурой 70000С;
- происходит зажигание дуги между наконечником сопла и электродом;
- происходит поступление сжатого воздуха в камеру, который проходит через дугу, нагреваясь и ионизируясь;
- в сопле происходит обжатие поступающего воздуха, вырывающегося из него единым потоком со скоростью 3 м/с;
- обжатый воздух, вырывающийся из сопла, разогревается до 300000С, превращаясь в плазму;
- при соприкосновении плазмы с изделием дежурная дуга гаснет, зажигается режущая (рабочая);
- рабочая дуга плавит металл в месте воздействия, результатом становится рез;
- части расплавленного металла сдуваются с изделия воздушными потоками, вырывающимися из сопла.
Любая технология плазменной резки металла зависит от скорости реза и расхода воздуха. Высокая скорость способствует появлению более тонкого реза. При низкой скорости и высокой силе тока ширина реза становится больше.
При усиленном расходе воздуха происходит увеличение скорости резки. Чем больше диаметр сопла, тем меньше скорость и шире рез.
Схема работы плазмореза
Итак, когда вы нажимаете на кнопку розжига, источник электрической энергии автоматически включается, и в резак попадает высокочастотный ток. Из-за этого появляется дежурная дуга между электродом и наконечником сопла. Температура дуги составляет от +6 000 до +8 000 градусов
Следует обратить внимание на то, что дуга между разрезаемым металлом и электродом появляется не сразу, на это требуется время
После этого в камеру резака начинает поступать воздух, находившийся в компрессоре (сжатый). Воздух начинает нагреваться при прохождении через камеру, в которой расположена дежурная дуга, и его становится больше в 100 раз. Помимо этого он начинает ионизироваться, по сути, превращаясь в токопроводящую среду, хотя воздух сам по себе является диэлектриком.
Сопло, которое сужено до 0,3 см создает плазменный поток, который вылетает из резака с большой скоростью (от 2 до 3 метров в секунду). Температура воздуха, который стал ионизированным, достигает до +30 000 градусов. С такой температурой воздух по проводимости становится таким же, как и проводимость металла. Как только плазма попадает на обрабатываемую поверхность, дежурная дуга выключается, но вместо нее включается рабочая. Плавление металлической заготовки производится в месте среза, откуда жидкий металл сдувается воздухом, который попадает в зону среза. Это и есть схема резки.
Деталировка агрегата
Рабочий орган аппарата имеет сложное внутреннее устройство. В отличие от кислородно-ацетиленового резака, в случае плазменной сварки, он получил особое название – плазмотрон.
Устройство плазматрона
В его корпусе находятся следующие узлы:
- сопло;
- электрод;
- изолятор;
- узел приема сжатого воздуха.
Возбудителем электрической дуги является электрод. Материалами его изготовления, чаще всего, являются гафний, цирконий и бериллий. Эти редкие металлы имеют свойство образовывать тугоплавкие оксидные пленки, которые защищают электрод от разрушения под воздействием высоких температур. Однако, по своим экологическим характеристикам, гафний превосходит другие металлы, ввиду меньшей радиоактивности и применяется чаще остальных.
Сопло плазменного резака выполняет функцию создания высокоскоростного потока плазмы. Геометрическая конфигурация сопла определяет скорость работы и мощность плазмореза, а также качество получаемой кромки реза. Последний параметр зависит от длины сопла.
Воздушный компрессор нужен для получения сжатого воздуха требуемого давления.
Устройство воздушного компрессора
Помимо этого, он применяется еще и для охлаждения рабочих элементов плазмореза.
Источник питания, плазмотрон, и воздушный компрессор соединяет между собой комплекс кабелей и шлангов.
В зависимости от типа контакта с разрезаемым материалом, плазморезы подразделяются на следующие виды: контактные и бесконтактные. Настроенный плазморез контактного типа дает возможность разрезать материалы толщиной до 18 мм.
Ручные плазморезы обладают малой мощностью. Они работают от сети переменного тока с напряжением 220 вольт. Мощные промышленные установки плазменной резки работают от трехфазной сети постоянного тока.
Плазменная резка металла
Как устроен плазморез?
Главными узлами плазмореза являются:
- источник постоянного тока (трансформатор или инвертор);
- плазмотрон (плазменный резак);
- воздушный компрессор.
Повышающие трансформаторы более громоздки, энергоемки, но при этом стойки к перепадам напряжения. Их преимуществом перед инверторами является возможность получать очень высокие напряжения, с их помощью специалисты могут резать металл больших толщин (до 8 см).
Инверторы занимают меньшую площадь и экономичнее трансформаторов (за счет более высокого КПД), однако, они не позволяют получать высоких напряжений. Как следствие – невозможность реза металла большой толщины (до 3 см).
Поэтому такие устройства распространены, по большей мере, на малых предприятиях и в небольших мастерских. Их принцип действия прост, поэтому агрегатом могут пользоваться младшие специалисты после проведения инструктажа, как работает аппарат.
Достоинства и недостатки плазменной резки
Обработка металлов аппаратами или станками плазменной резки дает в работе целый ряд преимуществ.
- По сравнению с кислородной горелкой, плазморез обладает более высокой мощностью, и соответственно, производительностью, и по данному параметру уступает только лазерным установкам промышленного масштаба.
- Плазменная резка выгодна с экономической точки зрения при толщине металла до 60 мм. Для резки материалов с толщиной более 60 мм рекомендуется использовать кислородную резку.
- Современные плазморезы отличаются высокоточной и качественной обработкой металлов. Срез получается «чистый», с минимальной шириной, благодаря чему, практически не требует дополнительной шлифовки.
- Также, плазменно-дуговая обработка характеризуется универсальностью применения, безопасностью и низким уровнем загрязнения окружающей среды.
Из недостатков можно отметить скромную толщину среза (до 100 мм), а также невозможность одновременной работы двух плазморезов и соблюдение жестких требований к отклонениям от перпендикулярности среза.
Требования к устройству и оснащению плазменных установок
3.1. Плазменные установки должны иметь пускорегулирующую, контрольную и защитную аппаратуру, обеспечивающую автоматическое поддержание режимов, безопасное обслуживание.
3.2. Вновь разрабатываемое оборудование, комплектное с механизмами перемещения плазмотрона, должно быть оснащено встроенными устройствами для отсоса пыли и газов, экранами для защиты от электромагнитного излучения и предупреждения распространения шума.
3.3. Полуавтоматические и автоматические плазменные установки должны иметь встроенные отсосы. Местные отсосы должны быть встроены в технологическую оснастку механизированных поточных и конвейерных линий.
3.4. При монтажных и других работах на нестационарных рабочих местах допускается использование вытяжных устройств, не связанных жестко с оборудованием и оснасткой.
3.5. Плазменные установки должны соответствовать требованиям «Санитарных норм и правил работы с источниками электромагнитных полей радиочастотного диапазона», утвержденных Минздравом СССР и ГОСТ 12.1.006-84 «ССБТ. Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах. Требования к проведению контроля».
3.6. Установки автоматизированной плазменной резки (машины с числовым программным управлением) должны быть оборудованы рабочим креслом оператора, удовлетворяющим эргономическим требованиям.
3.7. В технологической документации должны быть указаны основные и вспомогательные средства технологического оснащения, включая защитные, транспортные устройства и средства, обеспечивающие безопасные условия работы.
3.8. Паспортная документация на плазменные установки должна включать рекомендации по размещению оборудования и защите рабочих мест от вредных и опасных производственных факторов.
3.9. В паспорте должны быть указаны:
— параметры шума, генерируемого плазмотроном при оптимальном технологическом режиме;
— перечень средств защиты от оптического излучения и шума;
— рекомендуемый тип укрытия для локализации и удаления вредных веществ;
— производительность местной вентиляции;
— напряжение холостого хода источника питания (для ручного процесса — не более 180 В, для полуавтоматического — 300 В, для автоматического — 500 В).
Переделка из инверторного аппарата
Правильно собрать плазморез из сварочного инвертора своими руками можно, тщательно изучив принципы изготовления, купив все нужные детали.
Чертеж плазмореза на основе инвертора
Самодельные устройства рекомендуется собирать по типовым схемам, например на основе аппарата АПР-91. Необходимо четко придерживаться готовых чертежей. Это поможет правильно установить все конструктивные элементы, сделать работоспособное устройство.
Схема и изготовление осциллятора
Блок используется для генерации высокочастотных токов. Он функционирует в импульсном или непрерывном режиме. Осциллятор помогает быстро подготовить резак к работе.
Электрическая схема этого узла включает в себя:
- преобразователь (выпрямитель);
- ряд конденсаторов;
- блок питания;
- управляющие элементы;
- импульсный модуль;
- датчик напряжения.
Необходимые детали и возможность их самостоятельного изготовления
Для изготовления плазмореза требуется мощный источник питания. Лучший вариант – сварочный инвертор, выдающий стабильное напряжение.
Также потребуются следующие компоненты:
- Блок питания. Для формирования этого узла используют сварочный инвертор, работающий с постоянным током. Переделывать его не нужно: устройство обладает всеми необходимыми для работы параметрами.
- Плазмотрон. Этот компонент рекомендуется покупать в готовом виде, создавать его самостоятельно сложно.
- Осциллятор. Устройство паяют по простой схеме. Однако людям, не разбирающимся в электротехнике, рекомендуется приобретать модуль в готовом виде.
- Компрессор. Для самодельного агрегата подойдет любая деталь, например от краскопульта.
- Кабель-шланг. Этот элемент можно сконструировать из кислородного шланга и стандартного провода. Однако желательно приобрести готовый набор, включающий все необходимые компоненты.
- Кабель массы. Снабжается зажимом для фиксации на разрезаемой детали.
Процесс сборки плазмореза
Для подготовки оборудования к использованию плазмотрон соединяют с компрессором и инвертором.
Для этого потребуются кабель-пакеты, с которыми работают так:
- Провод подачи электрического тока применяют для соединения электрода с инверторным сварочным аппаратом.
- Воздушный шланг подключают к плазменной горелке и компрессору. В результате из воздушного потока должна образовываться струя плазмы.
О дальнейшей эксплуатации
Разрезаемый металл расплавляется только в точках воздействия, поэтому важно следить за перемещением потока. При смещении воздушно-плазменной струи качество работы ухудшается
Для соблюдения важного требования применяют тангенциальный способ подачи газа в камеру сопла.
Во время резки контролируют следующие показатели:
- Скорость движения воздуха. Она не должна резко повышаться. Качественный срез получается, если параметр составляет 800 м/с.
- Силу тока, подаваемого инвертором. Она должна составлять не более 250 А.
Конструкция и порядок эксплуатации
Одним из наиболее популярных видов ручных плазмотронов является Panasonic P80. Работа на нём должна производиться с учётом некоторых особенностей. В частности, перед началом резки обязательно соблюдение следующих условий:
- Во время возбуждения дуги нельзя касаться торцом наконечника кромки основного материала. Это приведёт к образованию неконтролируемой дуги, которая сожжёт наконечник.
- Процесс резки нельзя начинать при вертикальном расположении наконечника относительно основного металла. В этом случае внутри наконечника образуется дуга.
- При резке пластин толщиной более 16 мм необходимо убедиться, что дуга достигла нижней стороны заготовки, и только тогда перемещать горелку в новое положение.
При работе резака рекомендуется выдерживать зазор около 5 мм между заготовкой и наконечником. С этой целью в комплектации к резаку Р80 предусмотрена направляющая, которая электрически изолируется от разрезаемого металла.
Отклонение от перпендикулярности оси резака от поверхности заготовки не должно превышать 50, а направление движения инструмента должно быть противоположным направлению плазменной струи.
Все типы ручных плазмотронов – устройства повышенной опасности. Поражающими факторами являются яркое свечение дуги, высокие токи обработки и температуры. Поэтому необходимо тщательно придерживаться правил эксплуатации плазмореза, которые указывает производитель.
Цена ручного плазмореза Panasonic Р80 – от 5500 руб. Ближайшим отечественным аналогом плазмотрона Р80 считается резак П2-180, цены на который стартуют от 6000 руб. Более мощные модели, например, FBP60 от Fubag, стоят дороже – до 15000 руб. Доступны и менее мощные модели ручных плазмотронов, в частности, CUT РТ31 (от 2000 руб.).
Газгольдер для частного дома. Цена под ключ
Резьбонарезные гребёнки. Технология работы