3 способа: как сделать плавный пуск для электроинструмента своими руками
Содержание:
- Изготовление розетки плавного пуска
- Подготовка к монтажу устройства
- Самодельные варианты
- Как сделать плавный пуск и регулятор оборотов для болгарки
- Болгарка с регулировкой оборотов и плавным пуском
- Для чего болгарке низкие обороты?
- ПЛАВНЫЙ ПУСК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ
- Для чего нужно регулировать обороты на УШМ
- Самодельные варианты
- Пускатели для болгарок с симистором на 20 А
- Как подключить прибор к болгарке, варианты
Изготовление розетки плавного пуска
Самое главное требование для такой розетки – это ее мобильность. Поэтому вам понадобится переноска.
С помощью нее можно будет плавно запускать инструмент в любом месте – в гараже, на даче, при строительстве своего дома на разных участках стройплощадки.
Первым делом переноску нужно разобрать.
Основные провода питания в ней могут быть либо припаяны, либо подсоединены на винтовых зажимах.
В зависимости от этого, также будет происходить и подключение вашей дополнительной розетки. Это должна быть именно дополнительная розетка возле переноски, чтобы иметь возможность одновременно подключать инструмент в разных режимах.
Кстати, если вы по ошибке включите болгарку или циркулярку, имеющие заводской встроенный плавный пуск в розетку, также снабженной таким УПП, то на удивление все будет работать. Единственный момент – получится задержка запуска пилы или оборотов диска на пару секунд, что не очень удобно в работе и без привычки может озадачить.
Вот реальные испытания такого подключения, проведенные одним мастером с ютуб BaRmAgLoT777. Его комментарий после таких опробований на гравере типа Dremel, дреле Bosch, фрезере Makita, циркулярной пиле Интерскол:
Далее для сборки розетки берете многожильный медный провод сечением 2,5мм2 и зачищаете его концы.
После чего необходимо залудить контактную площадку на переноске, куда будет припаиваться этот провод.
Надежно припаиваете жилы кабеля к этим площадкам.
Аккуратно укладываете провода и закрываете удлинитель.
Берете квадратную наружную розетку для установки на внешней поверхности стен, и в ее корпус примеряете блок плавного пуска. Так как он имеет компактные прямоугольные размеры, то должен поместиться туда без особых проблем.
Монтируете и закрепляете корпус розетки на одной площадке с удлинителем.
Блочок ПП подключаете в разрыв любого провода, фазного или нулевого. Не перепутайте, на него не подается одновременно фаза и ноль, т.е. 220В.
Он устанавливается на какой-то один из проводов.
Также для этого БПП, нет никакой разницы с какой стороны сделать вход, а с какой выход. Скрутки пропаиваются и изолируются термоусадкой.
После чего, все внутренности розетки собираются в корпус и остается всю конструкцию закрыть крышкой.
На этом вся переделка переноски и изготовление розетки можно считать завершенной. По времени это займет у вас не более 15 минут.
Подготовка к монтажу устройства
Изготовление и применение переноски с маленьким БПП сэкономит деньги на покупку новых электроинструментов, продлив срок службы старых. Для бытовых условий достаточно применить блок на 12А с аббревиатурой KRRQD12A (см. рисунок ниже).
Такое устройство следует применять для пуска и работы коллекторных типов двигателя электроинструмента с мощностью до 2500 Ватт. Купив БПП, следует подобрать удлинитель достаточной для работы длины. Также нужно подготовить отдельную розетку, кусок многожильного мягкого медного провода, инструменты, термоусадки или изоленту. В случае если провода в удлинителе припаяны, а не прикручены на болтовом соединении, понадобятся паяльник, канифоль, припой.
Самодельные варианты
Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.
Простейшая схема
УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.
Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.
Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).
Плавный пуск на микросхеме
Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.
Схема 2. Схема плавного пуска электроинструмента
Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.
При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.
Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.
Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.
Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.
Как сделать плавный пуск и регулятор оборотов для болгарки
Все бюджетные варианты УШМ имеют несколько недостатков. Во-первых, не имеется системы плавного пуска. Это очень важная опция. Наверняка все из вас включали этот мощный электроинструмент в сеть, и при запуске наблюдали, как падает накал лампочки, которая также подключена к этой сети.
Такое явление происходит по той причине, что мощные электродвигатели в момент запуска потребляют огромные токи, из-за которых проседает напряжение сети. Это может вывести из строя сам инструмент, особенно китайского производства с ненадежными обмотками, которые могут в один прекрасный день сгореть во время пуска.
То есть система мягкого старта защитит и сеть, и инструмент. К тому же в момент запуска инструмента происходит мощная отдача или толчок, а в случае внедрения системы мягкого старта такого, разумеется, не будет.
Во-вторых, отсутствует регулятор оборотов, который позволит долго работать инструментом, не нагружая его.
Схема, представленная ниже, от промышленного образца:
Она внедряется производителем в дорогие приборы.
К схеме можно подключать не только «болгарку», но и, в принципе, любые приборы – дрель, фрезерные и токарные станки. Но с учетом того, что в инструменте должен стоять именно коллекторный двигатель.
С асинхронными двигателями такое не пройдет. Там необходим частотный преобразователь.
Итак, необходимо сделать печатную плату и приступить к сборке.
В качестве регулирующего элемента задействован сдвоенный операционный усилитель LM358, который с помощью транзистора VT1 управляет силовым симистором.
Итак, силовым звеном в этой схеме является мощный симистор типа BTA20-600.
Такого симистора не оказалось в магазине и пришлось купить BTA28. Он чуть мощнее того, что по схеме. В общем, для двигателей с мощностью до 1 кВт можно использовать любой симистор с напряжением не ниже 600 В и током от 10-12 А. Но лучше иметь некоторый запас и взять симисторы на 20 А, все равно они стоят копейки.
Во время работы симистор будет греться, поэтому на него необходимо установить теплоотвод.
Чтобы не было вопросов по поводу того, что двигатель при пуске может потреблять токи, которые значительно превышают максимальный ток симистора, и последний может попросту сгореть, помните, что схема имеет мягкий старт, и пусковые токи можно не принимать во внимание. Наверняка всем знакомо явление самоиндукции
Этот эффект наблюдается при размыкании цепи, к которой подключена индуктивная нагрузка
Наверняка всем знакомо явление самоиндукции. Этот эффект наблюдается при размыкании цепи, к которой подключена индуктивная нагрузка.
То же самое и в этой схеме. Когда резко прекращается подача питания на двигатель, ток самоиндукции с него может спалить симистор. А снабберная цепь гасит самоиндукцию.
Резистор в этой цепи имеет сопротивление от 47 до 68 Ом, а мощность от 1 до 2 Вт. Конденсатор пленочный на 400 В. В данном варианте самоиндукция как побочный эффект.
Резистор R2 обеспечивает токогашение для низковольтной цепи управления.
Сама схема в какой-то мере является и нагрузкой, и стабилизирующим звеном. Благодаря этому после резистора можно не стабилизировать питание. Хотя в сети есть такие же схемы с дополнительным стабилитроном, использовать его бессмысленно, поскольку напряжение на выводах питания операционного усилителя в пределах нормы.
Возможные варианты замен для маломощных транзисторов можно увидеть на следующей картинке:
Печатная плата, которая упоминалась ранее, представляет собой только плату для устройства плавного пуска, и в ней нет компонентов для регулировки оборотов. Это сделано специально, поскольку в любом случае регулятор нужно выводить с помощью проводов.
Настройка регулятора выполняется с помощью многооборотного подстроечного резистора на 100 кОм.
А основная регулировка уже с помощью резистора R5. Стоит сказать, что схема такого рода не позволит осуществлять регулировку от нуля, только от 30 до 100%.
Если нужен более мощный регулятор, то его можно собрать по следующей схеме:
Эта схема позволяет регулировать мощность практически от нуля, но для «болгарки» это не имеет смысла.
Вначале схема обязательно проверяется на работоспособность путем подключения в качестве нагрузки лампочки на 40-60 Вт 220 В.
Если все в порядке, то после отключения от сети сразу же нужно проверить симистор на ощупь – он должен быть холодным.
Далее, плата подключается к «болгарке» и производится запуск.
Если все работает нормально – «болгарка» запускается плавно, и регулируются обороты, — то пора приступать к тестам под нагрузкой.
Прикрепленные файлы:
Болгарка с регулировкой оборотов и плавным пуском
При выполнении работ своими руками важно, чтобы в электроинструменте был плавный пуск. Это особенно актуально, если часто приходится работать, а сеть не выдерживает напряжения инструмента
Система мягкого пуска защитит и сеть и инструмент
Бюджетный варианты угловых шлифовальных машин – УШМ – имеют ряд недостатков:
- У электроинструмента отсутствует возможность плавного, мягкого пуска. Это может привести к перебоям электроэнергии, так как болгарка в первые секунды после включения потребляет большое количество электричества. Также есть огромная вероятность порчи электродвигателя и поломки инструмента после того, как осуществлен не мягкий, пуск, а резкий, рывками.
- У электроинструмента, особенно простого китайского, нет в наличии регулятора оборотов (регулировкой оборотов можно обеспечить долгую работу инструмента без нагрузки на него).
Поэтому при выборе инструмента очень важно обращать внимание на такие параметры, как регулировка оборотов и наличие плавного пуска. Кроме того, при выборе УШМ следует обращать внимание на мощность. Здесь основным показателем служит объём выполняемых работ
Здесь основным показателем служит объём выполняемых работ.
Для объёмной работы в промышленных масштабах следует использовать УШМ мощнее примерно в два раза. Ещё к основным показателям кроме технических характеристик, относится безопасность. Болгарка должна быть безопасной. Что это значит? Во-первых, как уже было сказано, наличие плавного пуска, предотвращающего скачки напряжения во время включения. Автоматические предохранители, необходимые для экстренной остановки мотора во время сбоя системы. Предохранители служат регулятором, когда круг клинит. Обеспечивается защита от пыли. Она необходима при частом использовании болгарки, чтобы пыль не скапливалась в инструменте.
Важна функция теплоотвода. Теплоотвод защищает от перегрева. Во время работы, особенно если работы продолжительные, корпус машины подвержен сильному нагреванию, чтобы не было перегрева и необходим отвод тепла. При перегрузке УШМ останавливается – это происходит во время нагревания, приближающемуся к 200 оС. Ну и балансировка диска служит для снижения неприятной вибрации и биения инструмента при работе, особенно этому воздействию подвержены старые изношенные диски
Обращать внимание и уделять внимание безопасности при выборе инструмента и при дальнейшей работе с ним очень важно
При выборе инструмента стоит отметить, что существуют болгарки с одной и с двумя ручками. Здесь следует полагаться исключительно на удобство. Двуручные модели скорее всего будут более удобными при держании, однако такие инструменты тяжелее по весу, одноручные модели также придётся держать двумя руками, но такие УШМ меньше по размеру и весу.
Лидерам на рынке электроинструментов является фирма Bosch. Инструменты данной фирмы обладают всеми необходимыми характеристиками от удобства до безопасности. Также плюсами инструментов фирмы Bosсh является то, что есть хорошая вентиляция.
Для чего болгарке низкие обороты?
Встроенная функция регулирования скорости диска позволит деликатно обрабатывать такие материалы, как пластмасса или древесина. На низких оборотах повышается комфортность и безопасность работы. Особенно полезна такая функция в электро- и радиомонтажной практике, в автосервисах и реставрационных мастерских.
Кроме того, среди профессиональных пользователей электроинструмента существует устойчивое мнение, что чем проще устроен аппарат, тем он надёжнее. А дополнительный сервисный «фарш» лучше вынести за пределы силового агрегата. При таком раскладе ремонт техники значительно упрощается. Поэтому некоторые компании специально выпускают выносные отдельные электронные регуляторы, которые подключаются к сетевому шнуру машины.
ПЛАВНЫЙ ПУСК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ
Логичным способом снижения пускового тока стало снижение напряжения, подаваемого на статор в момент запуска, с его постепенным увеличением при разгоне двигателя.
Простейший и наиболее старый способ плавного пуска – реостатный пуск электродвигателя: в цепь статора последовательно включается несколько мощных резисторов, последовательно закорачиваемых контакторами.
Также могут использоваться и дроссели высокой индуктивности (реакторы), а также автотрансформаторы.
Подобный способ плавного пуска имеет очевидные недостатки:
Проблематичность автоматизации.
Работа контакторов не привязывается к реальному значению тока, они либо переключаются вручную, либо перебираются с помощью реле времени автоматически.
Усложнение пуска под нагрузкой.
Так как крутящий момент асинхронного двигателя пропорционален квадрату напряжения питания, снижение напряжения в момент пуска в 2 раза приведет к снижению крутящего момента в 4 раза. Применение плавного пуска с электродвигателями, напрямую подключенными к нагрузке, значительно увеличивает время выхода на рабочие обороты.
Совершенствование силовой электроники позволило создать компактные автоматические устройства плавного пуска (также называемые софтстартерами от английского soft start – «мягкий пуск») для асинхронных электродвигателей, устанавливаемые на стандартную монтажную рейку электрощитов.
Они обеспечивают не только плавный разгон, но и торможение двигателя, позволяя регулировать параметры токов пуска и остановки в различных режимах:
- Постоянное токоограничение.
В момент запуска ток ограничивается на заданном превышении номинального и удерживается на этой величине все время разгона двигателя. Обычно используется ограничение на уровне 200-300% номинального тока. Перегрузка становится малозначительной, хотя ее длительность возрастает.
Формирование тока.
В данном случае токовая кривая в момент включения двигателя имеет больший наклон, после чего софтстартер переходит в режим токоограничения.
Такой метод плавного пуска применяется при подключении к маломощным подстанциям или генераторам для снижения стартовой нагрузки, однако пусковой момент электродвигателя в данном случае минимален. Для устройств, лишенных холостого хода электродвигателя, использовать формирование тока с пологой стартовой кривой невозможно.
Ускоренный пуск (кик-старт).
Применяется с двигателями, напрямую приводящими нагрузку, так как иначе их пусковой крутящий момент может оказаться недостаточным для страгивания ротора.
В этом случае устройство плавного пуска допускает кратковременное превышение пускового тока в несколько раз (фактически осуществляется прямая коммутация), по истечении заданного времени ток снижается до двух-трехкратного превышения номинала.
Останов на выбеге.
При отключении двигателя напряжение с него снимается полностью, вращение якоря продолжается по инерции. Наиболее простой способ коммутации, применимый при небольших мощностях и малой инерции привода.
Однако в момент разрыва цепи происходит сильный индуктивный выброс, приводящий к сильному искрению в контакторах. На мощных электродвигателях, а также при высоких рабочих напряжениях данный способ отключения неприемлем.
Линейное снижение напряжения.
Применяется для более плавной остановки двигателя. Нужно помнить, что крутящий момент двигателя при этом снижается нелинейно из-за квадратичной зависимости момента от напряжения, то есть снижение момента происходит наиболее резко в начале кривой.
Отключение питания происходит при минимальном токе в обмотке, соответственно коммутирующие выключатели практически не изнашиваются образованием искры между контактами.
Для снижения нагрузок при остановке применяется управляемое снижение напряжения:
- вначале ток снижается минимально;
- затем кривая начинает снижаться круче.
Снижение крутящего момента электродвигателя при этом близко к линейному. Этот способ управления остановом электродвигателя применяется в устройствах с высокой инерционностью привода.
При использовании такого рода устройств плавного пуска пусконаладочные работы заключаются в настройке нужного типа кривой пускового тока и, в случае использования режимов формирования тока или ускоренного старта, настройке длительности временного интервала начального участка кривой.
Применение устройств плавного пуска позволяет автоматизировать пусковой режим, но его главный минус остается – либо приходится закладывать в устройство возможность холостого хода электродвигателя, либо допускать кратковременные перегрузки сети, раскручивая мотор и нагрузку с кик-стартом.
Для чего нужно регулировать обороты на УШМ
Любая болгарка конструктивно «заточена» на работу только с отрезным или зачистным кругом определенного диаметра. Всего существует шесть самых распространенных диаметров в интервале от 115 до 300 мм, которым соответствует шесть групп скоростей вращений шпинделя на холостом ходу. К примеру, болгарки с кругами Ø125 мм имеют частоту вращения порядка 11÷12 тыс. об/мин, а с кругами Ø150 мм — 9÷10 тыс. об/мин. Такие значения числа оборотов шпинделя обусловлены тем, что отрезные диски предназначены для высокопроизводительной обработки твердых материалов (металл, камень, керамика) на скоростях резания до 80 м/сек.
Однако при резке и в особенности шлифовке мягких и вязких материалов требуются совсем другие параметры резания и, соответственно, применение инструмента с регулятором скорости. Причем это касается не только древесины и пластмасс, но также сталей, сплавов титана и алюминия. Например, обработка пластиков и мягких сортов дерева происходит на скоростях резания от 8 до 12 м/сек, шлифовка сплавов титана и нержавейки — в пределах 15÷20 м/сек, и даже обычную сталь шлифуют не более чем при 30 м/сек. Поэтому скорость вращения шлифовальных насадок у болгарок должна быть меньше паспортной в несколько раз. При этом необходимо отметить, что в основной массе регуляторы оборотов УШМ по своей сути являются регуляторами мощности, подаваемой на электродвигатель болгарки. То есть снижение числа оборотов достигается уменьшением мощности источника на величину до 15 % от номинальной. Но для шлифовки и резки мягких материалов это не имеет большого значения, т. к. в этом случае изначально требуется небольшая мощность.
Самодельные варианты
Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.
Простейшая схема
УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.
Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)
Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.
Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).
Плавный пуск на микросхеме
Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.
Схема 2. Схема плавного пуска электроинструмента
Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.
При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.
Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.
Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.
Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.
Пускатели для болгарок с симистором на 20 А
Устройства с симисторами на 20 А подходят для профессиональных болгарок. У многих моделей применяются контакторные резисторы. В первую очередь они способны работать при высокой частоте. Максимальная температура пускателей равняется 55 градусам. У большинства моделей хорошо защищен корпус. Стандартная схема устройства предполагает применение трех контакторов емкостью от 30 пФ. Эксперты говорят о том, что устройства выделяются своей проводимостью.
Минимальная частота у пускателей составляет 35 Гц. Работать они способны в сети постоянного тока. Подключение модификаций осуществляется через переходники. Для моторов на 200 Вт хорошо подходят такие устройства. Фильтры довольно часто устанавливаются с триодами. Показатель чувствительности у них равняется не более 300 мВ. Довольно часто встречаются проводные компараторы с системой защиты. Если рассматривать импортные модели, то у них имеется интегральный преобразователь, который устанавливается с изоляторами. Проводимость тока обеспечивается на отметке 5 мк. При сопротивлении 40 Ом модель способна стабильно поддерживать большие обороты.
Как подключить прибор к болгарке, варианты
Подключение регулятора зависит от того, какой вид прибора выбран. Если используется простая схема, достаточно вмонтировать её в канал сетевого питания электроинструмента.
Установка самодельной платы
Не существует готовых рецептов по монтажу. Каждый, кто решил оборудовать УШМ регулятором, располагает его сообразно своим целям и модели инструмента. Кто-то вставляет прибор в ручку держателя, кто-то в специальную дополнительную коробку на корпусе.
В различных моделях пространство внутри корпуса болгарки может быть разным. В некоторых достаточно свободного места для установки управляющего блока. В других приходится выносить его на поверхность и крепить иным способом. Но хитрость в том, что, как правило, в задней части инструмента всегда существует определённая полость. Предназначена она для циркуляции воздуха и охлаждения.
Полость в задней части аппарата
Обычно именно здесь и располагается заводской регулятор оборотов. Сделанную своими руками схему можно поместить в это пространство. Чтобы регулятор не перегорел, тиристоры следует установить на радиатор.
Особенности монтажа готового блока
При покупке и установке заводского регулятора внутрь болгарки, чаще всего приходится модифицировать корпус – прорезать в нём отверстие для вывода регулировочного колеса. Но это может неблагоприятно отразиться на жёсткости кожуха. Поэтому предпочтительной является установка прибора снаружи.
Регулировочное колесо изменяет обороты
Цифры на регулировочном колесе обозначают количество оборотов шпинделя.
Значение это не абсолютное, а условное. «1» – минимальные обороты, «9» – максимальные. Остальные цифры служат для ориентировки при регулировании. Расположение колеса на корпусе бывает различным. Например, на УШМ Bosch PWS 1300–125 CE, Wortex AG 1213–1 E или Watt WWS-900, оно расположено у основания рукояти. В других моделях, таких как Makita 9565 CVL, регулировочное колесо находится в торце кожуха.
Схема подключения регулятора к болгарке не сложная, но иногда не так просто протянуть кабели к кнопке, которая располагается на другом конце корпуса прибора. Задача может решиться подбором оптимального сечения провода или выводом его на поверхность кожуха.
Регулятор подключается согласно схеме
Хороший вариант – установка регулятора на поверхности прибора или крепление к сетевому кабелю. Не всегда всё получается с первой попытки, иногда прибор приходится протестировать, после чего внести некоторые коррективы. А это легче делать, когда доступ к его элементам открыт.
Крепление к сетевому шнуру