Как подключить асинхронный двигатель
Содержание:
Схемы подключения
Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.
Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.
Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника
В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.
В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.
Регулятор напряжения
Самым простым и доступным регулятором количества оборотов электромотора стиральной машины является любое устройство, предназначенное для подобных действий. Это может быть:
- Димер;
- Гашетка электродрели;
- Поворотное колесо и т.д., взятое от любого бытового прибора или приобретенное в магазине.
Смысл операции по регулировке оборотов прост и заключается в уменьшении или увеличении поступающего напряжения на двигатель из сети 220 Вольт. То есть поворачивая колесо регулировки, мы регулируем напряжение, а следовательно, и задаем скорость вращения. Схема данного подключения выглядит следующим образом:
- Провод от катушки (1) соединяем с кабелем, идущим от якоря.
- 2-катушечный провод направляем на сеть.
- Оставшийся кабель (2) якоря замыкаем на димер.
- Второй выход димера – на сеть.
- Производим пробный запуск электромотора и работу регулятора.
Подключение через плату (микросхему)
Наша схема регулировки оборотов изначально не была самой элементарной. И именно для этого мы использовали в ней тахогенератор. Теперь пришло время заняться им. Ведь с помощью таходатчика мы сможем регулировать обороты двигателя стиральной машины без какой-либо потери его мощности, то есть превратив электромотор в реально функциональное устройство.
Принцип действия
Обмотки статора при помощи переменного тока образуют магнитные поля. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.
Если в двигателе отсутствует пусковой механизм, ротор останавливается, потому что результирующий крутящий момент равен нулю. В случае, когда ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, когда вал двигателя продолжает вращаться в заданном направлении.
Момент запуска
Сигналом к запуску становится магнитное поле двух обмоток, вращающее подвижную часть двигателя. Оно создается 2 обмотками: главной и пусковой. Дополнительная обмотка меньшего размера является пусковой и подключается к основной схеме включения однофазного двигателя через ёмкостное или индуктивное сопротивление.
Пусковая обмотка может работать кратковременно. Более длительное время нахождения под нагрузкой может вызвать перегревание и воспламенение изолирующих элементов, что приведет к выходу из строя.
Надежность повышается за счет встраивания в схему однофазного асинхронного двигателя таких элементов как тепловое реле и центробежный выключатель. Последний отключает пусковую фазу в тот момент, когда ротор разгоняется до номинальной скорости. Отключение происходит автоматически.
Работа реле происходит следующим образом: когда обмотки нагреваются до предельного значения, установленного на реле, механизм прерывает подачу питания на обе фазы, предотвращая отказ из-за перегрузки или по любой другой причине. Это защищает от возгорания.
Варианты подключения
Для того, чтобы мотор заработал необходимо иметь одну 220-вольтовую фазу. Это значит, что подойдет любая стандартная розетка. Благодаря этой простоте двигатели завоевали популярность в быту. Любой прибор, начиная от стиральной машины и до соковыжималки, имеет подобные механизмы в своем составе.
Известны два типа однофазных двигателей в зависимости от способа подключения:
- Однофазный асинхронный двигатель с пусковой обмоткой.
- Однофазный двигатель с конденсатором.
Схема подключения однофазного асинхронного двигателя с помощью конденсаторов изображена на рисунке.
Схема содержит пусковую обмотку с конденсатором. После ускорения ротора происходит выключение катушки. Рабочий конденсатор не позволяет размыкаться пусковой цепи, и запускающая обмотка работает через конденсатор в постоянном режиме.
Одновременно с рабочей обмоткой пусковая катушка снабжена током через конденсатор. При использовании в режиме пуска у катушки более высокое активное сопротивление. Фазовый сдвиг при этом имеет достаточную величину, чтобы началось вращение.
Допускается брать пусковую обмотку, с меньшей индуктивностью и большим сопротивлением. Запуск конденсатора осуществляется при подключении его к пусковой обмотке и временному источнику питания.
Чтобы достичь максимального значения пускового момента требуется вращающееся магнитное поле. Для этого нужно добиться положения обмоток под углом 900. При правильно рассчитанной емкости конденсатора обмотки могут быть смещены на 900 градусов. Расчет однофазного асинхронного двигателя зависит от схем подключения, которые приведены ниже.
Различные варианты подключения:
- временное включение электрического тока на стартовую обмотку через конденсатор;
- подача на пусковое устройство через резистор, без конденсатора;
- запуск через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.
Подключение двигателя
Подключать двигатель нужно в однофазную сеть переменного напряжения 220 вольт, частотой 50 герц. Эти номиналы электроэнергии имеются во всех жилых помещениях нашей страны, и вследствие этого однофазные моторы имеют огромную популярность. Они установлены во всей бытовой технике, такой как.
- Холодильник.
- Пылесос.
- Соковыжималка.
- Триммер.
- Кусторез электрический.
- Швейная машинка.
- Электродрель.
- Миксер кухонный.
- Вентилятор.
- Насос водяной.
Разновидности подключения
- Подключение с пусковой катушкой.
- Подключение с рабочим конденсатором.
Электродвигатели однофазные 220 В малой мощности с пусковой катушкой имеют включённый в цепь конденсатор во время старта. После разгона ротора катушка отключается. Если мотор сделан с рабочим конденсатором, цепь пуска не размыкается, идёт постоянная работа пусковой обмотки через конденсатор.
Существует возможность использовать один электромотор для разных целей. Один и тот же мотор можно снять с одной техники и установить на другую. Включать однофазный двигатель можно тремя схемами.
- Происходит временное включение электричества на пусковую обмотку через конденсатор.
- Происходит кратковременная подача напряжения на пусковое устройство через резистор, без конденсатора.
- Электричество подаётся через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.
При использовании в цепи пуска резистора, обмотка будет иметь активное сопротивление выше. Произойдёт сдвиг фаз, достаточный для начала вращения. Можно использовать пусковую обмотку, в которой большее сопротивление и меньшая индуктивность. Чтобы обмотка соответствовала своим параметрам, она должна иметь меньше витков, тоньше провод.
Конденсаторный пуск представляет собой подключение конденсатора к пусковой обмотке и временную подачу электроэнергии. Чтобы достичь максимального значения момента пуска, нужно круговое магнитное поле, оно должно выполнить вращение. Для этого нужно расположение обмоток под углом 90 градусов. Такого сдвига резистором добиться невозможно. Если ёмкость конденсатора рассчитать правильно, то удастся сдвинуть обмотки под угол 90 градусов.
Вычисление принадлежности проводов
Чтобы вычислить провода, подключающие пусковую обмотку и рабочую, нужно иметь прибор, измеряющий омы или тестер. Нужно замерять сопротивления обмоток. Сопротивление рабочей обмотки должно быть меньше, чем пусковой. Например, если замеры показали у одной обмотки 12 Ом, а у другой 30 Ом, то первая из них рабочая, а вторая пусковая. Рабочая обмотка будет иметь большее сечение чем пусковая.
Подборка ёмкости конденсатора
Чтобы подобрать ёмкость конденсатора, нужно знать, какой ток потребляет электромотор. Если он потребляет ток 1,4 ампера, то нужен конденсатор, ёмкость которого составляет 6 микрофарад.
Проверка работоспособности
Начать проверку следует с визуального осмотра.
- Если у агрегата была отломана опора, то вследствие этого он тоже мог работать плохо.
- В случае если потемнел корпус посередине, это говорит о том что он чрезмерно перегревался.
- Возможно, что в разрез корпуса попали разные посторонние вещи, это будет замедлять его и способствовать перегреву.
- Если подшипники загрязнены, будет происходить перегревание.
- Износ подшипников будет причиной перегревания.
- Если к пусковой обмотке 220v подключён конденсатор завышенной ёмкости, то он будет перегреваться. При подозрении на конденсатор нужно отключить его от пусковой обмотки, включить двигатель в сеть, вручную прокрутить вал, произойдёт запуск и начнётся вращение. Нужно дать мотору поработать около пятнадцати минут, затем проверить, не нагрелся ли он. Если мотор не нагрелся, то причина была в повышенной ёмкости конденсатора. Нужно установить конденсатор меньшей ёмкости.
Электродвигатели однофазные 220 в малой мощности выпускаются совершенно разных моделей и для разных целей, и, прежде чем купить изделие, нужно чётко понимать, какова нужна мощность, тип крепления, количество оборотов в минуту, и прочие характеристики.
https://youtube.com/watch?v=NW9T9xHFTuw
Подробно про статор
Статор это неподвижная часть электродвигателя, что отражено в его названии. Как правило, выполнен в виде цилиндра и закреплен к бетонному основанию пола.
Конструкция статора
Конструкция статора состоит из чугунного или алюминиевого корпуса, выполняющего роль жесткого элемента, внутри которого находятся медные обмотки, которые создают магнитное поле и сердечники из стали, которые являются его проводником.
На корпусе имеются ребра жесткости, выполняющие также функцию дополнительных охлаждающих . Материал корпуса выбран как слабопроницаемый для магнитного поля, чтобы работа магнитных полей не нарушалась электромагнитными помехами извне, и сама не создавал помехи.Сердечник представляет собой цилиндр, который состоит из стальных тонких спрессованных листов. Такая конструкция препятствует вихревым токам внутри сердечника, возникающим в процессе перемагничивания переменным электрическим напряжением.
Описание расположения обмоток статора
Обмотки статора это медные проводники, уложенные внутри статора так, что образуют индуктивные катушки, которые при подключении к разным фазам, создают разные магнитные поля.
Рассмотрим создание переменного магнитного поля в самом простом варианте, в двигателе с одной парой полюсов.У статора, в клеммной коробке имеется шесть проводов. Три провода это начала трех обмоток, и три провода это вывода с этих трех обмоток.
На чертеже видно эти шесть подходящих проводов. Три провода (С1, С2, С3) это начала обмоток, другие три провода (С4, С5, С6) это их окончания. Для удобства восприятия их всех пометили разными цветами.
На чертеже отображено минимальное количество катушек равное шести. По две катушки на одну фазу. Части обмоток, которые располагаются под цифрами, располагаются в пазах статора. Это схема, в реальности длина проводов в пазах на порядок больше.
На статоре, катушки подключенные к одной фазе располагаются одна напротив другой. Жирными точками отображены прохождения проводов обмотки в пазах статора.
Описание принципа создания вращающегося магнитного поля
В электродвигателе каждая катушка, находящаяся под напряжением, создает свое магнитное поле. Поскольку электрический ток является переменным, то и токи в каждой катушке в разные моменты времени изменяются от максимального положительного направления до максимального отрицательного.
Такой ток вызывает соответствующее переменное магнитное поле, которое суммируясь с магнитными полями всех катушек остальных фаз преобразуется во вращающееся поле статора, вокруг оси двигателя.
Это вращающее поле входит во взаимодействие с ротором, который индуцирует свое собственное магнитное поле. При движении поля статора, ротор приходит во вращательное движение. Это происходит из-за полей, которые взаимно отталкиваются.На чертеже тремя цветами показано, как располагаются разные обмотки подключенные к разным фазам. Контур образованный проводами, проходящими через пазы 1-16 называется катушкой.
Как правило, катушка образована большим количеством проводов, для усиления магнитного поля. Четыре катушки с пазами 1-16, 2-15, 3-14, 4-12 называются катушечной группой. Косыми черточками показаны переходы из одной катушки в другую.
Выводные концы обозначают буквой С и выводят их в клеммную колодку двигателя.
Магнитное поле для одного из полюсов создается проводами всех катушек в определенной катушечной группе. Это магнитное поле и называется полюсом электродвигателя. Их считают парами. В самом простом случае, электродвигатель бывает двухполюсным, как изображен на гифке выше.
Часто применяются также двухпарнополюсные (частота вращения ротора 1500 оборотов в минуту) и трехпарнополюсные двигатели (частота вращения ротора 1000 оборотов в минуту).
Как подключить двухскоростной электродвигатель схема
В каталоге указаны технические характеристики асинхронных трехфазных двухскоростных электродвигателей АИР с короткозамкнутым ротором производства Белоруссии. Параметры 2-х скоростных двигателей иных производителей могут несущественно отличаться.
Тип | Технические характеристики двухскоростных двигателей | Масса, кг | |||||||
Р, кВт | Частота вращения, об/мин | КПД, % | cos f | Iп/Iн | Мп/Мн | Мmax/Мн | Мmin/Мн | ||
АИР63А4/2 | 0,19 | 1380 | 55,0 | 0,66 | 3,5 | 1,6 | 1,8 | 1,0 | 5,1 |
0,265 | 2640 | 61,0 | 0,75 | 4,0 | 1,2 | 1,8 | 0,8 | ||
АИР63В4/2 | 0,265 | 1350 | 57,0 | 0,68 | 3,5 | 1,6 | 2,0 | 1,0 | 6,0 |
0,37 | 2580 | 61,0 | 0,82 | 4,0 | 1,2 | 1,7 | 0,8 | ||
АИР71А4/2 | 0,48 | 1360 | 69,0 | 0,76 | 4,5 | 1,5 | 1,9 | 1,4 | 8,6 |
0,62 | 2780 | 68,0 | 0,85 | 4,5 | 1,5 | 1,9 | 1,3 | ||
АИР71В4/2 | 0,71 | 1360 | 69,0 | 0,84 | 4,5 | 1,75 | 1,9 | 1,5 | 9,4 |
0,85 | 2780 | 68,0 | 0,86 | 4,5 | 1,85 | 2,0 | 1,4 | ||
АИР80А4/2 | 1,12 | 1410 | 74,0 | 0,78 | 5,0 | 1,9 | 2,2 | 1,6 | 13,0 |
1,50 | 2730 | 73,0 | 0,85 | 5,0 | 1,9 | 2,0 | 1,5 | ||
АИР80В4/2 | 1,50 | 1380 | 75,0 | 0,75 | 5,0 | 2,0 | 2,0 | 1,6 | 15,0 |
2,00 | 2720 | 75,0 | 0,84 | 5,0 | 2,0 | 2,1 | 1,6 | ||
АИР90L4/2 | 2,20 | 1430 | 79,0 | 0,83 | 6,0 | 1,9 | 2,4 | 1,6 | 19,7 |
2,65 | 2850 | 76,0 | 0,82 | 6,0 | 2,0 | 2,4 | 1,5 | ||
АИР90L6/4 | 1,32 | 930 | 74,0 | 0,68 | 5,0 | 1,6 | 1,9 | 1,5 | 19,6 |
1,60 | 1430 | 74,0 | 0,85 | 5,5 | 1,6 | 2,1 | 1,2 | ||
АИР90L8/4 | 0,80 | 710 | 62,0 | 0,60 | 3,0 | 1,7 | 2,0 | 1,6 | 19,0 |
1,32 | 1410 | 75,0 | 0,86 | 5,0 | 1,5 | 2,0 | 1,3 | ||
АИР100S4/2 | 3,00 | 1430 | 82,0 | 0,84 | 5,5 | 2,1 | 2,4 | 1,6 | 24,2 |
3,75 | 2790 | 80,0 | 0,90 | 5,5 | 2,0 | 2,4 | 1,6 | ||
АИР100L4/2 | 4,00 | 1400 | 82,0 | 0,88 | 5,5 | 1,9 | 2,1 | 1,6 | 29,2 |
4,75 | 2820 | 82,0 | 0,91 | 6,0 | 2,2 | 2,4 | 1,6 | ||
АИР100S6/4 | 1,70 | 940 | 76,0 | 0,76 | 4,5 | 1,3 | 1,8 | 1,3 | 22,5 |
2,24 | 1400 | 80,0 | 0,86 | 5,5 | 1,3 | 1,9 | 1,2 | ||
АИР100L6/4 | 2,12 | 950 | 77,0 | 0,73 | 4,5 | 1,4 | 2,0 | 1,3 | 27,1 |
3,15 | 1430 | 80,0 | 0,86 | 5,5 | 1,5 | 2,1 | 1,4 | ||
АИР100S8/4 | 1,00 | 720 | 70,0 | 0,61 | 4,0 | 1,2 | 1,8 | 1,1 | 21,5 |
1,70 | 1430 | 79,0 | 0,87 | 5,0 | 1,1 | 1,8 | 1,0 | ||
АИР100L8/4 | 1,40 | 720 | 72,0 | 0,60 | 4,0 | 1,6 | 2,0 | 1,5 | 26,2 |
2,36 | 1430 | 81,0 | 0,89 | 5,5 | 1,4 | 1,9 | 1,0 | ||
АИР100S8/6 | 1,00 | 710 | 72,0 | 0,64 | 5,0 | 1,4 | 2,0 | 1,3 | 22,0 |
1,25 | 970 | 77,0 | 0,66 | 5,5 | 1,5 | 2,2 | 1,0 | ||
АИР100L8/6 | 1,32 | 710 | 71,0 | 0,66 | 4,0 | 1,6 | 1,9 | 1,4 | 26,0 |
1,80 | 960 | 76,0 | 0,73 | 5,0 | 1,4 | 2,0 | 0,9 | ||
АИР112M8/4 | 2,2 | 710 | 70,0 | 0,65 | 5,0 | 1,2 | 1,8 | 1,0 | 38,6 |
3,6 | 1420 | 77,0 | 0,88 | 6,0 | 1,2 | 1,6 | 1,0 | ||
АИР160S4/2 | 11,0 | 1460 | 89,5 | 0,84 | 7,0 | 1,6 | 2,9 | 1,6 | 99,8 |
14,0 | 2790 | 85,5 | 0,90 | 7,0 | 1,6 | 2,9 | 1,0 | ||
АИР160М4/2 | 14,0 | 1460 | 89,5 | 0,86 | 7,0 | 1,5 | 2,9 | 1,5 | 103,9 |
17,0 | 2930 | 86,5 | 0,91 | 7,0 | 1,6 | 2,9 | 1,0 | ||
АИР160S6/4 | 7,5 | 980 | 86,5 | 0,78 | 6,5 | 1,8 | 2,8 | 1,7 | 88,9 |
8,5 | 1460 | 87,5 | 0,90 | 6,0 | 1,5 | 2,2 | 1,3 | ||
АИР160М6/4 | 11,0 | 980 | 87,5 | 0,79 | 6.5 | 1,7 | 2,8 | 1,7 | 113,9 |
13,0 | 1460 | 88,0 | 0,91 | 6,0 | 1,4 | 2,1 | 1,4 | ||
АИР160S8/4 | 6,0 | 730 | 81,0 | 0,69 | 5,5 | 1,8 | 2,0 | 1,0 | 86,9 |
9,0 | 1460 | 84,0 | 0,88 | 7,0 | 1,5 | 2,0 | 0,8 | ||
АИР160М8/4 | 9,0 | 730 | 81,5 | 0,71 | 5,5 | 1,5 | 2,0 | 1,0 | 108,9 |
13,0 | 1460 | 84,0 | 0,89 | 7,0 | 1,5 | 2,0 | 0,8 |
Схема подключения двухскоростного двигателя
Капитальный ремонт токарного станка в процессе. Главный двигатель — двухскоростной
В те времена, когда преобразователи частоты для асинхронных двигателей были роскошью (более 20 лет назад), в промышленном оборудовании в случае необходимости применялись двигатели постоянного тока, в которых имелась возможность регулировать частоту оборотов.
Способ этот был громоздкий, и наряду с ним использовался ещё один, попроще — применялись двускоростные (многоскоростные) двигатели, в которых обмотки подключаются и переключаются определённым образом по схеме Даландера, что позволяет изменять скорость вращения.
https://www.youtube.com/watch?v=rPj6vM0uFoU
Двигатели постоянного тока с изменением скорости и управлением от электронного блока используются в дорогостоящем промышленном оборудовании. А вот двухскоростные двигатели встречаются в станках производства СССР 1980-х годов средней ценовой категории. И по подключению лично у меня возникали проблемы, в связи с путаницей и недостатком информации.
Последние примеры — токарный станок спец. исполнения, лесопилка. Подробности будут ниже.
Исполнение обмоток напоминает соединение «треугольником», в связи с этим переключение может быть ассоциировано со «звездой-треугольником». И это сбивает с толку.
Существуют двигатели не только с двумя, но и с бОльшим количеством скоростей. Но я буду говорить о том, что лично подключал и держал в руках:
Двухскоростной асинхронный электродвигатель
Поменьше теории, побольше практики. И как обычно, от простого к сложному.
Двухскоростной асинхронный электродвигатель
Обмотки двухскоростного двигателя выглядят таким образом:
Схема двухскоростного двигателя
При подключении выводов U1, V1, W1 такого двигателя к трехфазному напряжению он будет включен в «треугольник» на пониженную скорость.
А если выводы U1, V1, W1 замкнуть между собой, а питание подать на выводы U2, V2, W2, то получатся две «звезды» (YY), и скорость будет в 2 раза выше.
Подключение трехфазного двигателя к сети 220В
Подключение трехфазного двигателя к однофазной сети так же возможно, как и включение его в трехфазную сеть. Разница будет лишь в способе подключения и в выдаваемой мотором рабочей мощности. Она не сможет превышать 50% от максимального значения, достигаемого при питании от сети 380 Вольт, если соединить обмотки звездой. При подключении методом треугольника можно развить 70% от максимально возможной мощности. Поэтому, если питание подается от сети 220В, имеет смысл подключать электродвигатель только вторым способом.
Схема подсоединения мотора 380 на 220
При питании от 380 на каждую намотку приходится одна фаза. Но при подключении к 220 Вольт к двум обмоткам подключается фазный и нулевой провод, третья остается свободной. Для компенсации отсутствия третьей фазы запуск электродвигателя происходит через конденсатор.
Если запускается в ход маломощный мотор (не более 1500 Вт) без начальной нагрузки, то подключать можно лишь через рабочий конденсатор. От него идут два провода. Первый нужно соединить с нулем, а второй – с 3-ей вершиной треугольника.
При запуске мощного асинхронного двигателя (от 1500 Вт) или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к 220В через рабочий и пусковой конденсаторы. Последний подключается параллельно первому. Он необходим для увеличения пускового момента, поэтому его включение происходит только в момент запуска мотора в ход.
Пусковой конденсатор включают в схему через кнопку, а подача питания в 220В происходит путем перевода специального тумблера в положение «включено», отключение – в состояние «выключено». Вместо тумблера можно воспользоваться кнопкой с двумя позициями. Тогда запуск будет следующим:
- Питание подается через тумблер или специальную кнопку;
- Нажимается кнопка пускового конденсатора;
- Она удерживается до тех пор, пока электродвигатель не разгонится;
- Кнопка пуска отпускается, отчего ее пружины размыкают цепочку конденсатора.
При включении электродвигателя в сеть 220 Вольт с реверсом для изменения направления вращения вала понадобится еще один тумблер. При смене положения один из выводов рабочего конденсатора будет соединяться то с фазой, то с нулем.
На рисунке выше предусмотрена схема подсоединения двигателя 380 к сети 220 с реверсом с пусковой кнопкой. Она актуальна, если мотор не набирает обороты с отсутствием пускового накопителя (он на рисунке находится справа).
Подбор конденсаторов
Емкость конденсаторов для подключения к 220В необходимо подбирать. В случае с рабочим накопителем это просто. Расчет его емкости происходит по формулам:
- Соединение треугольником: Ср=4800*I/U.
- Соединение звездой: Ср=2800*I/U.
Подбор пускового накопителя происходит опытным путем (смотрите видео). Обычно его емкость (Сп) больше в 2-3 раза по сравнению с Ср. Например: есть мотор с током в обмотках 2 ампера. При подсоединении намоток треугольником в сеть 220 Ср будет равен 25 мкФ. Тогда Сп будет варьироваться в диапазоне 50-75 мкФ. Но таких накопителей не найти в магазинах. Поэтому придется купит несколько с номинальной емкостью и соединить их параллельно. 25 мкФ можно получить из 2 по 10 мкФ и 1 по 5.
Если Сп будет меньше требуемого значения, то намотки статора будут перегреваться. Возможно даже плавление изоляционной оболочки. Если Сп будет больше требуемого, то нельзя будет развить достаточную мощность. Поэтому подбор начинайте с минимальной емкости (в примере это 50 мкФ), а затем ищите оптимальное значение путем добавления накопителей номинальной емкости.
Для запитывания двигателя от 220В подойдут накопители от 300В следующих типов:
- МБГЧ,
- МБПГ,
- МБГО,
- БГТ.
Вы можете узнать все характеристики накопителя (емкость, тип, рабочее напряжение), взглянув на его корпус.
Теперь вы сможете пользоваться трехфазным асинхронным электродвигателем, включая его к сети 220В или 380В в зависимости от того, какая линия проходит рядом. Чтобы лучше понять принцип подсоединения обмоток и фаз с их началами и концами, посмотрите видео.
Что такое конденсатор
Перед тем, как начать рассматривать особенности подключения электродвигателя на 220 вольт посредством схем с конденсатором, давайте ознакомимся с тем, что представляет собой этот прибор.
Итак, конденсатор – это элемент электротехники, деталь, состоящая из двух пластин, изготовленных из металла, которые разъединены слоем диэлектрического вещества. Когда к этим пластинам подается электрическое напряжение, происходит накопление заряда, которое находится внутри приспособления. Чем оно выше, тем больше заряд самих пластин.
Расчет емкости пластины, пример
Когда же напряжение перестает подаваться на металлические детали, конденсатор отдает свой заряд. При использовании переменного тока питания будет наблюдаться периодическая смена полярности напряжения. То есть, ток на пластинках будет то отрицательного, то положительного типа.
Ёмкость конденсаторного элемента – ключевая его характеристика, первое, на что обращается внимание при выборе компонента. С помощью этого числа можно точно определить объем энергии, которую прибор пропускает через себя в процессе работы
Показатель измеряется в фарадах. Данная величина довольно-таки большая, поэтому при идентификации параметра применяют своего рода приставки, с помощью которых вычисляется небольшая часть, которая собственно и используется. Например, часто можно встретить микрофарад, который равен приблизительно 0,000001 фараду.
Каждый такой элемент работает с номинальным напряжением определенного уровня. Правильный подбор конденсатора обеспечит долговечную и надежную работу. На маркировке детали указывается ее предельный показатель наработки, который выражается в часах.
Разновидности устройств
Всего реализовано несколько разновидностей данных элементов, каждая з которых имеет свои особенности.
Основные виды конденсаторов:
- полярные. Разработаны для применения в электроцепях постоянного тока. Их ключевая особенность – необходимость подсоединения в полном соответствии с указанным значением полярности. Обладают малыми габаритами и увеличенной ёмкостью;
- неполярные. Их подключение осуществляется независимо от показателя полярности. Применяются в большинстве ситуаций в сетях, переменного тока. размеры данных приборов больше, чем полярных;
- электролитической конструкции. В качестве металлических пластин установлены листы фольги, тонкая прослойка окисла здесь – диэлектрик.
По способу применения также есть несколько разновидностей конденсаторов, среди которых наиболее распространенными являются пусковые. Для этой роли лучше всего подходят именно электролитические модели. Они демонстрируют свою высокую эффективность при рабочей частоте тока в 50 Герц и напряжением 220 – 600В.
Модели с электролитами обладают высокой ёмкостью, которая в самых мощных моделях достигает показателей превышающих 100 000 микрофарад. Компоненты достаточно уязвимы к различным негативным влияниям, в частности к перегреву. Когда тепловой режим нарушается, детали быстро приходят в негодность. В конденсаторах неполярного типа этот недостаток исправлен, что сказывается на стоимости.
А сейчас давайте же более детально рассмотрим пусковые конденсаторы и их основные особенности.
Пусковые приборы
Когда силовой агрегат работает в штатном режиме, вращение его компонентов обеспечивается обмотками. Но, когда происходит непосредственно запуск, возникает необходимость начать вращения, а для этого стандартных ресурсов двигателя бывает недостаточно. Именно использование дополнительного инструментария позволяет осуществить плавный старт, без рывков. Можно применять для таких целей рабочий конденсатор, который копит заряд, показатели которого превышают уровень рабочего напряжения. Далее элемент отдает заряд в необходимый момент. Но и этого недостаточно, поэтому применяется еще один важный усилитель – пусковой конденсатор.
Данная деталь запускается временно, на промежуток, не превышающий несколько секунд. Осуществляется это посредством кратковременного нажатия кнопки пуска. Выключение конденсатора проводится автоматически, после начала самостоятельного набора скорости двигателем.
Применение конденсатора пускового действия особенно важно, когда мотор нуждается в запуске под нагрузкой. Здесь нужно увеличивать стартовый момент на протяжении первых секунд старта.
Подключение асинхронного двигателя
Трехфазный переменный ток
Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.
Трехфазный ток (разница фаз 120°)
Звезда и треугольник
Трехфазная обмотка статора электродвигателя соединяется по схеме в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).
Фазное напряжение — разница потенциалов между началом и концом одной фазы
Другое определение для соединения «звезда»: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы «треугольник» отсутствует нейтраль)
Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).
Звезда | Треугольник | Обозначение |
---|---|---|
Uл, Uф — линейное и фазовое напряжение, В, | ||
Iл, Iф — линейный и фазовый ток, А, | ||
S — полная мощность, Вт | ||
P — активная мощность, Вт |
Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.
Пример: Допустим электродвигатель был подключен по схеме «звезда» к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А
Полная потребляемая мощность:
S = 1,73∙380∙1 = 658 Вт.
Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:
S = 1,73∙380∙3 = 1975 Вт.
Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.
Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.
Подключение электродвигателя по схеме звезда и треугольник
Обозначение выводов статора трехфазного электродвигателя
Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Начало | Конец | |
Открытая схема (число выводов 6) | ||
первая фаза | U1 | U2 |
вторая фаза | V1 | V2 |
третья фаза | W1 | W2 |
Соединение в звезду (число выводов 3 или 4) | ||
первая фаза | U | |
вторая фаза | V | |
третья фаза | W | |
точка звезды (нулевая точка) | N | |
Соединение в треугольник (число выводов 3) | ||
первый вывод | U | |
второй вывод | V | |
третий вывод | W |
Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85
Схема соединения обмоток, наименование фазы и вывода | Обозначение вывода | |
---|---|---|
Начало | Конец | |
Открытая схема (число выводов 6) | ||
первая фаза | C1 | C4 |
вторая фаза | C2 | C5 |
третья фаза | C3 | C6 |
Соединение звездой (число выводов 3 или 4) | ||
первая фаза | C1 | |
вторая фаза | C2 | |
третья фаза | C3 | |
нулевая точка | ||
Соединение треугольником (число выводов 3) | ||
первый вывод | C1 | |
второй вывод | C2 | |
третий вывод | C3 |