Онлайн калькулятор расчета буронабивных свайно-ростверковых и столбчатых фундаментов
Содержание:
- Вычисление коэффициентов постели
- Расчет
- Последовательность вычислений
- 6.3 Расчет буронабивных свай
- Самостоятельный анализ
- Особенности и преимущества буронабивного фундамента
- Выбор строительной площадки
- ШАГ 2.
- Вычисление осадки
- *Пояснения к калькулятору:
- Способы вычисления несущей способности по различным параметрам
- Строение винтовой сваи
- Расчет фундаментной конструкции на примере
- Как правильно рассчитать шаг
Вычисление коэффициентов постели
Для вычисления коэффициентов постели используются усредненные (в пределах зафиксированной глубины сжимаемой толщи HС) значения модуля деформации EГР и коэффициента бокового расширения mГР. Эти значения вычисляются по формулам.
Коэффициент постели С1 вычисляется тремя методами.
Метод 1. Коэффициент постели С1 вычисляется на основании усредненных значений EГР и mГР по формуле:
Метод 2. Коэффициент постели С1 вычисляется по формуле Винклера:
, где
Метод 3. Для определения коэффициента постели С1 используется формула метода 1. Отличие состоит в том, что для определения усредненного модуля деформации ЕГР3 вводится поправочный коэффициент u к величине модуля деформации i–того подслоя. Этот коэффициент изменяется от u1=1 на уровне подошвы фундамента до un=12 на уровне уже вычисленной границы сжимаемой толщи. Принято, что коэффициент u изменяется по закону квадратной параболы:
Кроме того, принимается, что дополнительное вертикальное напряжение по глубине распределено равномерно. Тогда
Суть метода 3 изложена в работах и состоит в том, что в действительности модуль деформации грунта по глубине нарастает. Не учет этого факта приводит к неоправданно завышенным значениям осадок, а, следовательно, и к заниженным значениям коэффициента постели С1.
Для методов 1 и 3 коэффициент постели С2 вычисляется по формуле:
Для метода 2 коэффициент постели С2 не вычисляется.
По результатам работы программы выполняется построение полей осадок, границ сжимаемой толщи, коэффициентов постели Пастернака и Винклера. Выполняется построение эпюр вертикальных напряжений в любой точке приложенной нагрузки (Рис. 4, 5).
Рис.5. Эпюра вертикального напряжения при различном распределении нагрузки вдоль свай
Расчет осадки свайного фундамента, как условного, строго в соответствии с нормами выполняется при K1, K2 = 0 и K3 = 1.
Если внешняя нагрузка на свайный фундамент задана на несколько уровней, то эпюра напряжений от нее будет иметь ступенчатый вид, отражающий уровни приложения соответствующих долей нагрузки. Так на Рис. 5-а показана эпюра вертикального напряжения при К1 = 0, К2 = 0, К3 = 1. На Рис. 5-б показана эпюра вертикального напряжения при К1 = , К2 = 0.9, К3 = Причем, К2 разбит еще на 10 подуровней (количество подуровней может изменяться по желанию пользователя). На Рис. 5-в показана эпюра вертикального напряжения при К1 = 0.1, К2 = 0.6, К3 = 0.3.
По результатам вычисления осадок предоставляется возможность вычисления их разностей между существующими и проектируемыми фундаментами. Определяются также перекосы фундаментов существующих зданий, возникающие от проектируемых сооружений (Рис. 6). Перекосы вычисляются между парами точек, заданных пользователем.
Рис.6. Таблицы осадок и перекосов
Система ГРУНТ входит в состав таких программных комплексов как ЭСПРИ 2013, ЛИРА-САПР и МОНОМАХ-САПР.
ВЫВОДЫ. Система ГРУНТ позволяет производить экспертную оценку осадок, кренов и перекосов сооружений, как на естественном, так и на свайном основании и оценивать влияние проектируемых новых зданий на существующую окружающую застройку.
Новые возможности системы ГРУНТ для определения параметров жесткости грунтового и свайного оснований Открыть
Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.
Расчет
Расчетное сопротивление грунта основания
Данные для расчета взяты из СП 22.13330.2011 (Актуализированная редакция СНиП 2.02.01-83*).
, где
коэффициент условий работы, принимаемые по таблице 5.4;
коэффициент условий работы, принимаемые по таблице 5.4;
коэффициент, принимаемый равным единице, если прочностные характеристики грунта ( и ) определены непосредственными испытаниями, и k = 1,1, если они приняты по таблицам приложения Б;
ширина подошвы фундамента, м;
осредненное (см. 5.6.10) расчетное значение удельного веса грунтов,
залегающих ниже подошвы фундамента, кН/м3;
осредненное (см. 5.6.10) расчетное значение удельного веса грунтов,
залегающих выше подошвы фундамента, кН/м3;
расчетное значение удельного сцепления грунта, залегающего
непосредственно под подошвой фундамента (см. 5.6.10), кПа;
угол внутреннего трения грунта основания;
коэффициенты, принимаемые по таблице 5.5;
коэффициенты, принимаемые по таблице 5.5;
коэффициенты, принимаемые по таблице 5.5;
Коэффициент, принимаемый равным единице при b < 10 м; kz= z0 ÷ b+ 0,2 при b ≥ 10 м (здесь z0 = 8 м)
глубина заложения фундаментов, м, бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле (5.8);
глубина подвала, расстояние от уровня планировки до пола подвала, м;
Более подробную информацию можно посмотреть: Расчет сопротивления грунта основания
Данные для расчета взяты из приложения В СП 22.13330.2011 (СНиП 2.02.01-83*).
Формула при d ≤ 2:
, где
расчетное сопротивление грунта основания (при d=2м и b=1м), кПа;
коэффициент, принимаемый для оснований, сложенных крупнообломочными и
песчаными грунтами, кроме пылеватых песков, — k1 = 0,125, пылеватыми песками, супесями, суглинками и глинами — k1 = 0,05;
ширина проектируемого фундамента, м;
глубина заложения проектируемого фундамента, м;
ширина фундамента равная 1м (Ro);
глубина заложения фундамента равная 2м (Ro).
Формула при d>2:
, где
расчетное сопротивление грунта основания (при d=2м и b=1м), кПа;
коэффициент, принимаемый для оснований, сложенных крупнообломочными и
песчаными грунтами, кроме пылеватых песков, — k1 = 0,125, пылеватыми песками, супесями, суглинками и глинами — k1 = 0,05;
коэффициент, принимаемый для оснований, сложенных крупнообломочными и
песчаными грунтами, — k2 = 0,25, супесями и суглинками — k2 = 0,2 и глинами — k2 = 0,15;
ширина проектируемого фундамента, м;
глубина заложения проектируемого фундамента, м;
ширина фундамента равная 1м (Ro);
глубина заложения фундамента равная 2м (Ro);
расчетное значение удельного веса грунта, расположенного выше подошвы фундамента, кН/м3.
Последовательность вычислений
- рельефе участка;
- составе и плотности грунта;
- уровне залегания грунтовых вод;
- уровне промерзания грунта;
- объёме сезонных осадков, характерном для данного климатического пояса.
Совет: при невозможности произвести геодезическое исследование в расчётах руководствуются минимально-расчётной нагрузкой.
Чтобы выполнить расчет свайно-винтового фундамента, сначала вычисляем количество винтовых свай (К). Для этого необходимо знать:
- общую нагрузку на фундамент (Р), которая исчисляется по таблицам удельного веса материалов (в кг);
- коэффициент надёжности (k) как поправку значения нагрузок (на него обязательно умножают Р);
- несущую способность грунта, определяемую по таблице усреднённых нагрузок на винтовые сваи;
- площадь пяты сваи в зависимости от диаметра (по таблице);
- максимально допустимую нагрузку (S) на одну сваю (по таблице).
Полученные данные подставляют в формулу, согласно которой выполняется расчет фундамента на винтовых сваях: К = P*k/S
Коэффициент надёжности (k) согласуется с количеством свай:
- k = 1,4 — для 11—22 шт;
- k = 1,65 — для 6—10 шт;
- k = 1,75 — для 1—5 шт.
Каждая свая несёт нагрузку, пропорциональную суммарной нагрузке строения.
Используя приведенную формулу, коэффициент и винтовые сваи для фундамента расчет нагрузки и последующее строительство выполняются довольно просто.
Для окончательного расчёта требуется распределить нагрузку под несущими стенами и зонами повышенного давления на фундамент, учитывая:
- тип свай (висячие или стойки);
- вес;
- показатель кренового усилия.
6.3 Расчет буронабивных свай
6.3.1 Расчеты свайных фундаментов и их элементов выполняются в соответствии с общими положениями СП 24.13330.2011, МГСН 2.07-01 [], МГСН 5.02-99 [].
6.3.2 При расчете буронабивных свай из виброштампованного бетона по прочности материала расчетное сопротивление бетона следует принимать с учетом коэффициента условий работы γcb= 1 и коэффициента условий работы, учитывающего влияние способа производства работ при наличии в скважине воды и извлекаемых обсадных труб, γ’cb= 0,9.
6.3.3 Сваю в составе фундамента и одиночную по несущей способности грунта основания следует рассчитывать исходя из условия
(1)
где N — расчетная вертикальная нагрузка, передаваемая на сваю, кН;
Fd — несущая способность (предельное сопротивление) грунта основания одиночной сваи, кН, называемая в дальнейшем несущей способностью сваи;
γ, γn, γk — коэффициенты, принимаемые согласно п. 7.1.11 СП 24.13330.2011.
6.3.4 Несущую способность Fd буронабивной сваи, работающей на сжимающую нагрузку, следует определять по формулам:
а) при объемном виброштамповании укладываемой бетонной смеси
Fd = γc(γcRRA + UΣγcffihi), (2)
где γс — коэффициент условий работы сваи, γc = 1;
γcR — коэффициент условий работы грунта под нижним концом сваи (для песков и супесей γcR = 1,1; для глин и суглинков γcR = 1; в остальных случаях, согласно п. 7.2.6 СП 24.13330.2011);
R — расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое, согласно п. 7.2.7 СП 24.13330.2011;
А — площадь опирания сваи, м2, принимаемая равной:
— для буронабивных свай без уширения — площади поперечного сечения ствола сваи в уровне подошвы;
— для буронабивных свай с уширением — площади поперечного сечения уширения в месте наибольшего его диаметра;
U — периметр поперечного сечения ствола сваи, м;
γcf — коэффициент условий работы грунта на боковой поверхности сваи (для любого типа грунта γcf = 0,9);
fi — расчетное сопротивление i-го слоя грунта на боковой поверхности сваи, кПа, принимаемое по таблице приложения ;
hi — толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;
б) при вибровтрамбовывании щебня в грунт ниже забоя скважины или сваи-оболочки, погружаемой с выемкой грунта
Fd = γc(γcR1RA + UΣγcffihi), (3)
где γс — коэффициент условий работы сваи, γс = 1;
γcR1 — коэффициент условий работы, учитывающий особенности совместной работы щебеночного «ядра» в основании сваи и окружающего уплотненного грунта, принимаемый по таблице ;
R — расчетное сопротивление уплотненного грунта под подошвой буронабивных свай, сооружаемых с вибровтрамбовыванием жесткого материала в забой, кПа, принимаемое по таблице приложения ;
А — площадь опирания сваи, м2, принимаемая равной:
— для буронабивных свай без уширения — площади поперечного сечения ствола сваи в уровне подошвы;
— для свай-оболочек, заполняемых бетоном, — площади поперечного сечения оболочки брутто;
U — периметр поперечного сечения ствола сваи, м;
γcf — коэффициент условий работы грунта на боковой поверхности сваи, принимаемый:
— при объемном виброштамповании укладываемой бетонной смеси (для любого типа грунта γсf = 0,9);
— в остальных случаях, согласно п. 7.2.6 СП 24.13330.2011 в зависимости от способа образования скважины и условий бетонирования;
fi — расчетное сопротивление i-го слоя грунта на боковой поверхности сваи, кПа, принимаемое по таблице приложения ;
hi — толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м.
Таблица 1 — Значения коэффициента γcR1
Значение коэффициента для пылевато-глинистых грунтов с показателем текучести IL |
|||||||
0,1 |
0,2 |
0,3 |
0,4 |
0,5 |
0,6 |
||
для песчаных грунтов |
|||||||
гравелистых |
крупных |
— |
средней крупности |
мелких |
пылеватых |
— |
|
Пески средней плотности |
— |
— |
— |
0,8 |
1,0 |
1,1 |
— |
Супеси, суглинки и глины |
— |
— |
0,8 |
0,9 |
1,0 |
1,1 |
1,2 |
Примечания
1 Для промежуточных значений IL значения коэффициента γcR1 определяются интерполяцией.
2 Для гравелистых, крупных песчаных и пылевато-глинистых грунтов с показателем текучести IL < 0,2 определение сопротивлений производится по результатам опытных работ. Для предварительной оценки сопротивления основания под нижним концом сваи по формуле () допускаются принимать γcR1 = 0,5.
6.3.5 При определении несущей способности буросекущихся и бурокасательных свай, воспринимающих сжимающую нагрузку в составе конструкций типа «стена в грунте», следует учитывать уменьшение трения грунта на боковой поверхности сваи, вызванное объединением сечений соседних свай в ряду.
Самостоятельный анализ
Определение слоев проводится самостоятельно по имеющимся выкопанным колодцам, погребам или буровым отверстиям. Однако такая методика не рекомендуется, так как часто влечет за собой получение ошибочных результатов, значительно понижающим надежность всего здания. Чтобы компенсировать погрешности при самостоятельном анализе, коэффициент берут максимальный, то есть 1,7.
Интересно, что такое решение часто приводит к необходимости увеличения общего числа свай, что финансово бывает дороже, чем оплата услуг специалиста для анализа по эталонной скважине. Прежде чем принимать решение, необходимо хорошо подумать, на что лучше потратить деньги – дополнительные опоры или квалифицированную информацию об особенностях грунта.
Особенности и преимущества буронабивного фундамента
В некоторых случаях при сооружении жилых зданий нет возможности устанавливать ленточный фундамент. Например, из-за наличия вблизи уже возведенных зданий или коммуникационных узлов. Такая проблема особенно актуальна в населенных пунктах, где площади участков небольшие и каждый владелец пытается возле дома разместить максимальное количество построек.
Разрешить ситуацию так, чтобы не принести вреда основаниям уже существующих сооружений, позволяет использование буронабивного фундамента на сваях. При его сооружении есть возможность проводить все процессы с максимальной точностью. Кроме того, уровень вибрационных колебаний в процессе работы минимальный, что предотвращает разрушительное влияние на размещенные поблизости постройки.
Преимущества использования свай при сооружении фундамента:
Относительная дешевизна сооружения. Монолитное или ленточное основание, если провести правильный расчет материалов, обойдется значительно дороже буронабивного.Универсальность применения. С помощью такого фундамента можно соорудить основание на любом типе грунта, включая участки, расположенные вблизи водоемов.Возможность установки на глубину промерзания грунта.Это решение подходит для конструкций из любых материалов.
Например, для домов из кирпича, бруса или панелей.Скорость сооружения. На его строительство уходит около 5-7 суток.Безопасность. При постройке полностью исключена возможность негативно повлиять на уже готовые здания или нанести вред ландшафту.
Еще одна особенность использования свай – заливка прямо на месте строительства. К проблематике сооружения такого фундамента можно отнести только бурение скважин для заливки, которые вырыть с помощью техники возможно не всегда, и вся работа проводится вручную.
Фото буронабивных свай
Выбор строительной площадки
Местоположение строительной площадки определяется в соответствии с назначением возводимого здания и типом его конструкций. Строительная площадка выбирается без наличия наледи и отсутствия паводковых вод.
Участки земли, расположенные у подножия гор, зачастую насыщены наледями, вздутиями пучинистых грунтов и глубинными прожилками льда. На пологих склонах такие явления не наблюдаются. Такие участки наиболее приемлемы для строительства.
Для оценки пригодности участка под строительство производят геодезическую съёмку. Также делают съёмку окружающей местности. Это позволит обрисовать всю картину направления естественных водных потоков, возможность их отвода и устройства канализационных каналов.
ШАГ 2.
Основные сведения о грунтах
Тип грунта основания
Крупнообломочный с песчаным заполнителем и песок, кроме мелкого и пылеватогоПесок мелкийПесок пылеватый: маловлажный и влажныйПесок пылеватый: насыщенный водойГлинистый, а также крупнообломочный с глинистым заполнителем при IL<=0,25Глинистый, а также крупнообломочный с глинистым заполнителем при 0,25<=IL<=0,5Глинистый, а также крупнообломочный с глинистым заполнителем при IL>0,5
Прочностные характеристики грунта определены непосредственными испытаниями
Прочностные характеристики грунта приняты по таблицам приложения Б СП 22.13330.2011 (Актуализированная редакция
СНиП 2.02.01-83*)
Расчетное значение удельного сцепления грунта, залегающего
непосредственно под подошвой фундамента [cII], кПа
кПа
Угол внутреннего трения грунта основания [φII], °
°
Осредненное расчетное значение удельного веса грунтов,
залегающих ниже подошвы фундамента [γII], кН/м3
кН/м3
Осредненное расчетное значение удельного веса грунтов,
залегающих выше подошвы фундамента [γ’II], кН/м3
кН/м3
Вычисление осадки
Перед определением осадки необходимо сравнить напряжение под подошвой (р) с допустимой нагрузкой грунта (R). Если выполняется условие, то можно воспользоваться линейной моделью и считать осадку методом послойного суммирования.
Вычисляют ординаты эпюр природного давления для первого слоя грунта:
- γ_n — коэффициент, зависящий от типа грунта;
- h_n- высота слоя;
- n – порядковый номер слоя.
Значение коэффициента для различных типов грунта, кН/м3 | |
Слежавшаяся насыпь | 17 |
Слежавшаяся супесь | 21 |
Песок средней фракции | 18,9 |
Грунт перенасыщенный влагой | 10,25 |
Тугопластичный суглинок | 19,1 |
Следующем шагом находят значение параметра для каждого последующего слоя, прибавляя к основной формуле: Q_(n-1).
Расчет стабилизированной осадки проводят по формуле:
- β – коэффициент, принимаемые исходя из заданных условий по нормативной документации;
- Е – модуль деформации грунтов (определяется по результатам изысканий).
*Пояснения к калькулятору:
Технология расчета была взята из книги В.С. Сажина «Не зарывайте фундаменты вглубь»
- В разделе «Установление степени морозной пучинистости грунтов» указаны 3 независимых оценки пучинистости грунтов:
- «2.1 Определение степени пучинистости грунтов по их физическим характеристикам» является наиболее точной. Необходимо знать уровень грунтовых вод.
- «2.2 Ориентировочная оценка пучинистости грунтов» исходя из названия является ориентировочной оценкой.
- «Оценка степени пучинистости грунтов по рельефу местности» еще более ориентировочный, чем второй способ.
При расчете коэффициента А для определения толщины подушки используется степень пучинистости грунтов по первому способу «2.1 Определение степени пучинистости грунтов по их физическим характеристикам».
В калькуляторе по умолчанию реализованы два примера из книги по определению нагрузок на фундамент, для зданий с двумя конструктивными схемами зданий. Если вы не нашли своих материалов для стен либо других элементов здания, то вы можете самостоятельно указать рассчитанные нагрузки на фундамент в разделе калькулятора «Указать свои значения нагрузок».
Строительные калькуляторы
- Калькулятор Бетон-Онлайн v.1.0 — расчет состава бетона.
- Калькулятор Раствор-Онлайн v.1.0 — расчет состава раствора для кладочных работ.
- Калькулятор Лента-Онлайн v.1.0 — проектирование ленточного фундамента.
- Калькулятор Столбы-Онлайн v.1.0 — проектирование столбчатого фундамента.
- Калькулятор ГрунтСопр-Онлайн v.1.0 — расчет сопротивления грунта основания.
- Калькулятор ГПГ-Онлайн v.1.0 — расчет нормативной и расчетной глубины промерзания грунта.
- Калькулятор Вес-Дома-онлайн v.1.0 — расчет нагрузок на фундамент.
- Калькулятор Армирование-Ленты-Онлайн v.1.0 — расчет армирования ленточного фундамента.
Способы вычисления несущей способности по различным параметрам
Несущая способность сваи зависит от целого ряда параметров. Главные из них – материал опоры и виды грунта, с которыми она контактирует при заглублении. Опираясь на данные характеристики можно легко рассчитать необходимое количество элементов свайного фундамента и их геометрические параметры.
Свайные фундаменты
Среди получивших наибольшее распространение в частном домостроении можно выделить следующие свайные фундаменты:
- На винтовых сваях;
- На забивных опорах;
- С помощью буронабивных свай.
Каждый вариант хорош в тех или иных случаях и может использоваться при строительстве зданий различной конструкции и этажности.
Расчет фундамента на винтовых сваях
Винтовые сваи представляют собой стальные трубчатые опоры, оснащенные в нижней части лопастями, облегчающими процесс внедрения в грунт. Для строительства домов используют элементы диаметром 133, 108 и 89 мм. Более тонкие сваи можно применять для монтажа легких конструкций типа беседок и террас.
Фундамент на винтовых сваях
Несущая способность сваи с лопастями зависит от следующих параметров опоры:
- Диаметра трубы;
- Длины трубы, погруженной в почву;
- Диаметра лопастей, распределяющих конечную нагрузку на грунт.
Даже трубы самого большого диаметра не позволяют использовать их для строений из таких сравнительно тяжелых строительных материалов, как кирпич и бетонные стеновые блоки. Для соответствия нагрузке дома даже на таких мощных почвах, как глиняные шаг установки винтовых свай может составлять 0,3 метра, что невыгодно с точки зрения технологии и экономики строительства.
Особенности фундамента на забивных сваях
Максимально возможная несущая способность забивной сваи позволяет широко использовать подобный вид фундаментов даже при строительстве многоэтажных жилых домов. Это способствует их распространению при возведении конструкций высотой до 40-60 метров.
Применение специализированной строительной техники позволяет использовать опоры, длина боковой поверхности которой может составлять десятки метров. Забитая свая нижним концом опирается на высокопрочные скальные породы, передавая им нагрузку от конструкции дома. Прочность материала опоры достаточна для сохранения ее целостности под такой высокой нагрузкой.
В частном домостроении фундамент на забивных сваях распространен очень слабо. Связано это с высокой стоимостью аренды пневматического забивного оборудования и его операторов. Только в крайних случаях строительные инженеры склоняются в пользу такого вида фундамента для двухэтажных частных домов.
Буронабивные сваи – оптимальный вариант фундамента
Буронабивные сваи аналогичны забивным, но монтаж тела опор осуществляется непосредственно на месте строительства. Для этого в грунте бурится отверстие, в которое опускается полая цилиндрическая опалубка в виде труб. Внутрь устанавливается стальной усиливающий каркас и полость заполняется бетоном. Для увеличения несущей способности сваи возможно изготовление ее нижнего конца в виде полусферического или конического расширения.
Важный аспект – материал, из которого изготовлена опора и способ ее изготовления. Максимальная величина характерна для железобетонных заводских стоек. Несущая способность сваи по материалу в расчетах характеризуется коэффициентами, величина которых определяется по соответствующим таблицам.
Фундамент на буронабивных сваях
В процессе бурения первого или пробного шурфа на месте строительства необходимо как можно тщательнее изучить имеющиеся слои грунта, ибо каждый из видов почв обладает различной несущей способностью сваи. Конкретные цифры по каждому виду почв легко найти в соответствующем ГОСТе, который называется «Грунты. Классификация». Эти величины учитывают, когда определяется несущая способность сваи по грунту.
Буронабивная свая, как и забивная, благодаря плотной посадке в почву нагрузку от конструкции дома передает не только своим нижним концом, но и по всей боковой поверхности. Это отличает их от свайных опор и служит неоспоримым преимуществом. Для более тщательного изучения технологии расчета несущей способности сваи рассмотрим ее на конкретном примере.
Строение винтовой сваи
Винтовая свая имеет четыре основных элемента:
- Тело сваи в виде трубыНаконечник, обеспечивающий легкое проникновения сваи в грунтЛопасть сваи, с помощью которой свая вворачивается в землюОголовок, необходимый для обвязки свай
Конструкция винтовой сваи
Из этих элементов только сама труба, из которой изготовлена свая, а также лопасть имеют определяющее значение для сопротивления сваи нагрузкам. Труба выступает опорным столбом, на который давит здание, а лопасть образует дополнительную площадку, увеличивающую площадь соприкосновения сваи с грунтом. Тем самым лопасть уменьшает удельное давление на грунт.
Расчет фундаментной конструкции на примере
Чтобы понять, как самостоятельно выполнить необходимые исчисления, необходимо рассмотреть приблизительный расчет фундамента, пример:
- Определяется общий вес материалов, которые будут использоваться при возведении объекта – 26 525кг.
- Определяется величина нагрузки (полезной) 7х7х150=7 350кг.
- Определяется величина снеговой нагрузки 180х7х7=8 820кг.
- Определяется общая нагрузка на фундаментную конструкцию 26 525 + 7 350 + 8 820 = 42 695кг.
- Полученный результат умножается на коэффициент 42 695 х 1,1 = 46 954,50кг.
- Для строительства дома необходимо задействовать 22 сваи, которые необходимо устанавливать с шагом в 1,2м. Также следует добавить 2 опоры для установки половых лаг.
Как правильно рассчитать шаг
Расчет шага производится в зависимости от схемы размещения свай и от конфигурации постройки.
Если известно общее количество, опоры расставляются по выбранной схеме — сначала по углам, затем заполняются наиболее нагруженные линии, расположенные под несущими стенами, после чего расставляют оставшиеся сваи по площади комнат для поддержки лаг перекрытий.
Задаче проектировщика является обеспечение максимальной жесткости ростверка, установка опор в точках максимальных нагрузок и равномерное распределение веса дома между остальными стволами.
Для построек обычного типа распределение свай проблемы не вызывает, намного сложнее расстановка опор на сооружениях сложной конфигурации с неравномерным распределением массы элементов.
В таких ситуациях сначала размещают кусты свай под наиболее нагруженными точками, после чего размещают остальные опоры.
ВАЖНО!
В любом случае, необходимо соблюдать минимальные расстояния между соседними опорами, чтобы не снизить удельное сопротивление грунта. В противном случае несущая способность фундамента в данных точках окажется значительно ниже расчетной, что приведет к деформациям или разрушению ростверка и стен постройки.