Определение удельной потери давления в воздуховодах
Содержание:
Воздухообмен в помещении
Определение воздухообмена в помещении прежде всего завит от типа помещения, бытовое, коммерческое или промышленное использование. Часы и время работы, интенсивность и т.д. В таблице представленные типовые примеры кратности для расчета полного желаемого воздухообмена в помещении.
Кроме типа помещения косвенно на определение воздухообмена влияет тип оборудования которое вы собираетесь использовать в помещении, а именно: производительность вентилятора; давление воздуха создаваемое вентилятором; протяженость и сечение вентиляционной системы; использование рециркуляции, рекуперации или приточно-вытяжной вентиляции; используемые климатические системы кондиционирования.
Для правильного обустройства вентиляции необходимо определить количество воздухообмена воздуха в помещении в течение часа, существует несколько способов.
Один из способов определения полного воздухообмена основан на кратности воздухообмена, где кратность выбирается в зависимости от вида помещения и составленная на основе проведенных исследований. Согласно таблицы кратности для каждого помещения.
L = V пом * Kр (м3/ч),
Где,
L– Объем воздуха для полного воздухообмена М3/ч;
V пом – объем рассчитываемого помещения, м3;
Кр – кратность воздухообмена, основанная на таблице кратности.
Определение объема помещения производится по следующей формуле:
V (м3) = A * B *H
Где,
А — ширина помещения в метрах;
В — длина помещения в метрах;
Н — высота помещения в метрах.
В зависимости от полученного объема воздуха выбирается вентиляционное оборудование.
Углубленный расчет полного воздухообмена
Также при расчете полного воздухообмена в помещении можно использовать формулу, в которой указывается нормативное количество воздуха на одного человека для данного помещения:
L = L1 * NL (м3/ч),
Где,
L1 – нормативное количество воздуха из расчета на одного человека, м3/ч*чел;
NL – общее количество людей одновременно прибывающих в помещении
Существует следующее нормативное количество воздуха на человека:
20 м3/час на одного человека — при незначительной физической активности;
45 м3/час на одного человека — при легкой физической активности;
60 м3/час на одного человека — при тяжелой физической работе.
Эти данные позволяют подбирать правильное климатическое оборудования в зависимости от требований этого помещения по вентиляции и кондиционированию.
На что следует обратить особое внимание при расчете воздухообмена в помещении
Прежде всего необходимо сделать вывод, каким образом будет производится воздухообмен. Например прямой выброс воздуха через стенку на улицу осевым вентилятором или системой разветвленных воздуховодов с использованием канального вентилятора или центробежной улитки.
От этого зависит последующий выбор оборудования.
На представленной таблице видно взаимосвязь между диаметром воздуховода его пропускной способностью, а так же указаны потери давления на пагоном метре воздуховода.
Потери давления в вентиляционном канале на прямую связаны с общим воздухообменном в помещении и их необходимо принимать во внимание при выборе оборудования. Например для воздухообмена в 1000 м3/ч возможно использование воздуховода диаметром 200mm, но при значительной длине воздуховода лучше использовать диаметр воздуховода 250mm
При использовании воздуховода большего диаметра вы получите в итоге меньшее сопротивление общей системы воздуховодов и меньшую потерю производительности вентиляционного оборудования.
Для правильного и более точного осуществления воздухообмена в помещении необходимо учитывать все вышесказанные параметры.
Остались вопросы? спрашивайте постараемся ответить.
vent.vn.ua
Расчет нормального воздухообмена для эффективной вентиляции квартиры или дома
Итак, при нормальной работе вентиляции в течение часа воздух в помещениях должен постоянно меняться. Действующими руководящими документами (СНиП и СанПиН) установлены нормы притока свежего воздуха в каждое из помещений жилой зоны квартиры, а также минимальные объемы его вытяжки через каналы, расположенные на кухне, в ванной в санузле, иногда – и в некоторых других специальных помещениях.
Эти нормативы, опубликованные в нескольких документах, для удобства читателя объединены в одну таблицу, показанную ниже:
Тип помещения | Минимальные нормы воздухообмена (кратность в час или кубометров в час) | |
---|---|---|
<font>ПРИТОК</font> | <font>ВЫТЯЖКА</font> | |
<font>Требования по Своду Правил СП 55.13330.2011 к СНиП 31-02-2001 «Одноквартирные жилые дома»</font> | ||
Жилые помещения с постоянным пребыванием людей | Не менее однократного обмена объема в течение часа | — |
Кухня | — | 60 м³/час |
Ванная, туалет | — | 25 м³/час |
Остальные помещения | Не менее 0,2 объема в течение часа | |
<font>Требования по Своду Правил СП 60.13330.2012 к СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха»</font> | ||
Минимальный расход наружного воздуха на одного человека: жилые помещения с постоянным пребыванием людей, в условиях естественного проветривания: | ||
При общей жилой площади более 20 м² на человека | 30 м³/час, но при этом не менее 0,35 от общего объема воздухообмена квартиры в час | |
При общей жилой площади менее 20 м² на человека | 3 м³/час на каждый 1 м² площади помещения | |
<font>Требования по Своду Правил СП 54.13330.2011 к СНиП 31-01-2003 «Здания жилые многоквартирные»</font> | ||
Спальная, детская, гостиная | Однократный обмен объема в час | |
Кабинет, библиотека | 0,5 от объема в час | |
Бельевая, кладовка, гардеробная | 0,2 от объема в час | |
Домашний спортзал, биллиардная | 80 м³/час | |
Кухня с электрической плитой | 60 м³/час | |
Помещения с газовым оборудованием | Однократный обмен + 100 м³/час на газовую плиту | |
Помещение с твёрдотопливным котлом или печью | Однократный обмен + 100 м³/час на котел или печь | |
Домашняя прачечная, сушилка, гладильная | 90 м³/час | |
Душевая, ванная, туалет или совмещенный санузел | 25 м³/час | |
Домашняя сауна | 10 м³/час на каждого человека |
Пытливый читатель наверняка заметит, что нормативы по разным документам несколько отличаются. Причем, в одном случае нормы устанавливаются исключительно по размерам (объему) помещения, а другом – по количеству людей постоянно пребывающих в этом помещении. (Под понятием постоянного пребывания имеется в виду нахождение в комнате 2 часа и более).
Поэтому при проведении расчетов вычисления минимального объема воздухообмена желательно проводить по всем доступным нормативам. А затем – выбрать результат с максимальным показателем – тогда ошибки точно не будет.
Провести быстро и точно расчет притока воздуха для всех помещений квартиры или дома поможет первый предлагаемый калькулятор.
Калькулятор расчета требуемых объемов притока воздуха для нормальной вентиляции
Как видите, калькулятор позволяет провести вычисления и от объёмов помещений, и от количества постоянно пребывающих в них людей. Повторимся, желательно провести оба расчета, а затем выбрать из двух получившихся результатов, если они будут различаться, максимальный.
Проще будет действовать, если заранее составить небольшую таблицу, в которой перечислены все помещения квартиры или дома. А затем в нее вносить полученные значения притока воздуха – для комнат жилой зоны, и вытяжки – для помещений, где предусмотрены вытяжные вентиляционные каналы.
К примеру, это может выглядеть так:
Помещение и его площадь | Нормы притока | Нормы вытяжки | ||
---|---|---|---|---|
1 способ – по объему комнаты | 2 способ – по количеству людей | 1 способ | 2 способ | |
Гостиная, 18 м² | 50 | — | — | |
Спальная, 14 м² | 39 | — | — | |
Детская, 15 м² | 42 | — | — | |
Кабинет, 10 м² | 14 | — | — | |
Кухня с газовой плитой, 9 м² | — | — | 60 | |
Санузел | — | — | — | |
Ванная | — | — | — | |
Гардероб-кладовая, 4 м² | — | |||
Суммарное значение | 177 | |||
Принимаемое общее значение воздухообмена |
Затем суммируются максимальные значения (они в таблице для наглядности выделены подчёркиванием), отдельно для притока и для вытяжки воздуха. А так как при работе вентиляции должно соблюдаться равновесие, то есть сколько воздуха в единицу времени поступило в помещения – столько же должно и выйти, итоговым выбирается также максимальное значение из полученных двух суммарных. В приведенном примере – это 240 м³/час.
Этот значение и должно быть показателем суммарной производительности вентиляции в доме или квартире.
Расчет воздуховодов приточных и вытяжных систем механической и естественной вентиляции
Аэродинамический расчет воздуховодов обычно сводится к определению размеров их поперечного сечения, а также потерь давления на отдельных участках и в системе в целом. Можно определять расходы воздуха при заданных размерах воздуховодов и известном перепаде давления в системе.
При аэродинамическом расчете воздуховодов систем вентиляции обычно пренебрегают сжимаемостью перемещающегося воздуха и пользуются значениями избыточных давлений, принимая за условный нуль атмосферное давление.
При движении воздуха по воздуховоду в любом поперечном сечении потока различают три вида давления:статическое, динамическое и полное.
Статическое давление определяет потенциальную энергию 1 м3 воздуха в рассматриваемом сечении (рст равно давлению на стенки воздуховода).
Динамическое давление – это кинетическая энергия потока, отнесенная к 1 м3 воздуха, определяется по формуле:
(1)
где – плотность воздуха, кг/м3; – скорость движения воздуха в сечении, м/с.
Полное давление равно сумме статического и динамического давлений.
(2)
Традиционно при расчете сети воздуховодов применяется термин “потери давления” (“потери энергии потока”).
Потери давления (полные) в системе вентиляции складываются из потерь на трение и потерь в местных сопротивлениях (см.: Отопление и вентиляция, ч. 2.1 “Вентиляция” под ред. В.Н. Богословского, М., 1976).
Потери давления на трение определяются по формуле Дарси:
(3)
где – коэффициент сопротивления трению, который рассчитывается по универсальной формуле А.Д. Альтшуля:
(4)
где – критерий Рейнольдса; К – высота выступов шероховатости (абсолютная шероховатость).При инженерных расчетах потери давления на трение , Па (кг/м2), в воздуховоде длиной /, м, определяются по выражению
(5)
где – потери давления на 1 мм длины воздуховода, Па/м [кг/(м2 * м)].
Для определения Rсоставлены таблицы и номограммы. Номограммы (рис. 1 и 2) построены для условий: форма сечения воздуховода круг диаметром, давление воздуха 98 кПа (1 ат), температура 20°С, шероховатость= 0,1 мм.
Для расчета воздуховодов и каналов прямоугольного сечения пользуются таблицами и номограммами для круглых воздуховодов, вводя при этом эквивалентный диаметр прямоугольного воздуховода, при котором потери давления на трение в круглом и прямоугольном ~ воздуховодахравны.
В практике проектирования получили распространение три вида эквивалентных диаметров:
■ по скорости
при равенстве скоростей
■ по расходу
при равенстве расходов
■ по площади поперечного сечения
при равенстве площадей сечения
При расчете воздуховодов с шероховатостью стенок, отличающейся от предусмотренной в таблицах или в номограммах (К = ОД мм), дают поправку к табличному значению удельных потерь давления на трение:
(6)
где – табличное значение удельных потерь давления на трение; – коэффициент учета шероховатости стенок (табл. 8.6).
Потери давления в местных сопротивлениях. В местах поворота воздуховода, при делении и слиянии потоков в тройниках, при изменении размеров воздуховода (расширение – в диффузоре, сужение – в конфузоре), при входе в воздуховод или в канал и выходе из него, а также в местах установки регулирующих устройств (дросселей, шиберов, диафрагм) наблюдается падение давления в потоке перемещающегося воздуха. В указанных местах происходит перестройка полей скоростей воздуха в воздуховоде и образование вихревых зон у стенок, что сопровождается потерей энергии потока. Выравнивание потока происходит на некотором расстоянии после прохождения этих мест. Условно, для удобства проведения аэродинамического расчета, потери давления в местных сопротивлениях считают сосредоточенными.
Потери давления в местном сопротивлении определяются по формуле
(7)
где – коэффициент местного сопротивления (обычно, в отдельных случаях имеет место отрицательное значение, при расчетах следует учитывать знак).
Коэффициентотносится к наибольшей скорости в суженном сечении участка или скорости в сечении участка с меньшим расходом (в тройнике). В таблицах коэффициентов местных сопротивлений указано, к какой скорости относится.
Потери давления в местных сопротивлениях участка, z, рассчитываются по формуле
(8)
где
– сумма коэффициентов местных сопротивлений на участке.
Общие потери давления на участке воздуховода длиной, м, при наличии местных сопротивлений:
(9)
где – потери давления на 1 м длины воздуховода;
– потери давления в местных сопротивлениях участка.
Рекомендации по монтажу
Монтаж системы вентиляции играет не менее важную роль, чем проектирование и выбор материала. Ошибки, допущенные при установке воздуховодов, могут свести к нулю все усилия, приложенные на стадии разработки.
Для того чтобы вентиляция работала правильно и без сбоев, при установке нужно учесть ряд правил:
- Следует избегать прогибов вентиляционных каналов. Если используется гофрированная труба, стоит добиваться ее максимального растяжения.
- Необходимо позаботиться об отводе статического электричества, для этого нужно использовать заземление.
- Для прокладки воздуховода через стены стоит использовать гильзы.
- Все стыки необходимо обработать герметиком.
- Стараться избегать сильных загибов при монтаже гофрированной трубы.
- Правильно смонтированная сеть вентиляционных каналов содержит минимум поворотов, острых углов, изгибов, а ее общая длина не должна превышать 3 м (к этому нужно стремиться);
- Для длинных гофрированных каналов следует устанавливать крепления через каждые 1,5 м. Это позволит избежать колебания воздуховода при работающей вытяжке.
- Если избежать острого угла загиба не получается, следует увеличить сечение воздуховода.
После монтажа воздуховода все элементы вентиляции следует замаскировать для того, чтобы портить интерьер помещения.
Для этого можно использовать:
- натяжные и подвесные потолки;
- гипсокартонные или пластиковые короба;
- навесные кухонные конструкции;
- фальшпанели.
Основные формулы аэродинамического расчета
Первым делом необходимо сделать аэродинамический расчет магистрали. Напомним что магистральным воздуховодом считается наиболее длинный и нагруженный участок системы. За результатами этих вычислений и подбирается вентилятор.
Только не забывайте об увязке остальных ветвей системы
Это важно! Если нет возможности произвести увязку на ответвлениях воздуховодов в пределах 10% нужно применять диафрагмы. Коэффициент сопротивления диафрагмы рассчитывается за формулой:
Если неувязка будет больше 10%, когда горизонтальный воздуховод входит в вертикальный кирпичный канал в месте стыковки необходимо разместить прямоугольные диафрагмы.
Основная задача расчета состоит из нахождения потерь давления. Подбирая при этом оптимальный размер воздуховодов и контролирую скорость воздуха. Общие потери давления представляют собой сумму двух компонентов — потерь давления по длине воздуховодов (на трение) и потерь в местных сопротивлениях. Расчитываются они по формулам
Эти формулы правильны для стальных воздуховодов, для всех остальных вводится коэффициент поправки. Он берется из таблицы в зависимости от скорости и шероховатости воздуховодов.
Для прямоугольных воздухопроводов расчетной величиной принимается эквивалентный диаметр.
Рассмотрим последовательность аэродинамического расчета воздуховодов на примере офисов, приведенных в предыдущей статье, по формулам. А затем покажем как он выглядит в программке Excel.
Пример расчета
По расчетам в кабинете воздухообмен составляет 800 м3/час. Задание было запроектировать воздуховоды в кабинетах не больше 200 мм высотой. Размеры помещения даны заказчиком. Воздух подается при температуре 20°С, плотность воздуха 1,2 кг/м3.
Проще будет если результаты заносить в таблицу такого вида
Сначала мы сделаем аэродинамический расчет главной магистрали системы. Теперь все по-порядку:
Разбиваем магистраль на участки по приточным решеткам. У нас в помещении восемь решеток, на каждую приходится по 100 м3/час. Получилось 11 участков. Вводим расход воздуха на каждом участке в таблицу.
- Записываем длину каждого участка.
-
Рекомендуемая максимальная скорость внутри воздуховода для офисных помещений до 5 м/с. Поэтому подбираем такой размер воздуховода, чтобы скорость увеличивалась по мере приближения к вентиляционному оборудованию и не превышала максимальную. Это делается для избежания шума в вентиляции. Возьмем для первого участка берем воздуховод 150х150, а для последнего 800х250.
V1=L/3600F =100/(3600*0,023)=1,23 м/с.
V11= 3400/3600*0,2= 4,72 м/с
Нас результат устраивает. Определяем размеры воздуховодов и скорость по этой формуле на каждом участке и вносим в таблицу.
- Начинаем расчеты потерь давления. Определяем эквивалентный диаметр для каждого участка, например первого dэ=2*150*150/(150+150)=150. Затем заполняем все данные необходимые для расчета из справочной литературы или вычисляем: Re=1,23*0,150/(15,11*10^-6)=12210. λ=0,11(68/12210+0,1/0,15)^0,25=0,0996 Шероховатость разных материалов разная.
- Динамическое давление Pд=1,2*1,23*1,23/2=0,9 Па тоже записывается в столбец.
- Из таблицы 2.22 определяем удельные потери давления или рассчитываем R=Pд*λ/d= 0,9*0,0996/0,15=0,6 Па/м и заносим в столбик. Затем на каждом участке определяем потери давления на трение: ΔРтр=R*l*n=0,6*2*1=1,2 Па.
- Коэффициенты местных сопротивлений берем из справочной литературы. На первом участке у нас решетка и увеличение воздуховода в сумме их КМС составляет 1,5.
- Потери давления в местных сопротивлениях ΔРм=1,5*0,9=1.35 Па
- Находим суму потерь давления на каждом участке = 1.35+1.2=2,6 Па. А в итоге и потери давления во всей магистрали = 185,6 Па. таблица к тому времени будет иметь вид
Далее производится по тому же методу расчет остальных ветвей и их увязка. Но об этом поговорим отдельно.
С чего начинать?
Диаграмма потери напора на каждый метр воздуховода.
Очень часто приходится сталкиваться с достаточно простыми схемами вентиляции, в которых присутствует воздухопровод одного диаметра и нет никакого дополнительного оборудования. Такие схемы просчитываются достаточно просто, но что делать, если схема сложная с множеством ответвлений? Согласно методике просчета потерь давления в воздуховодах, которая изложена во многих справочных изданиях, нужно определить самую длинную ветвь системы либо ветку с наибольшим сопротивлением. Выяснить таковую по сопротивлению на глаз удается редко, поэтому принято вести расчет по самой протяженной ветви. После этого пользуясь величинами расходов воздуха, проставленных на схеме, всю ветку делят на участки по этому признаку. Как правило, расходы меняются после разветвлений (тройников) и при делении лучше всего ориентироваться на них. Бывают и другие варианты, например, приточные или вытяжные решетки, встроенные прямо в магистральный воздуховод. Если на схеме это не показано, а такая решетка имеется, потребуется расход после нее высчитать. Участки нумеруют начиная от самого удаленного от вентилятора.
Алгоритм выполнения расчетов
При проектировании, настройке или модификации уже действующей вентиляционной системы обязательно выполняются расчеты воздуховода. Это необходимо для того, чтобы правильно определить его параметры с учетом оптимальных характеристик производительности и шума в актуальных условиях.
При выполнении расчетов большое значение имеют результаты замеров расхода и скорости движения воздуха в воздушном канале.
Расход воздуха – объем воздушной массы, поступающий в систему вентиляции за единицу времени. Как правило, этот показатель измеряется в м³/ч.
Скорость движения – величина, которая показывает, насколько быстро воздух перемещается в системе вентиляции. Этот показатель измеряется в м/с.
Если известны эти два показателя, можно рассчитать площадь круглых и прямоугольных сечений, а также давление, необходимое для преодоления локального сопротивления или трения.
Составляя схему, нужно выбрать угол зрения с того фасада здания, который расположен в нижней части планировки. Воздуховоды отображаются сплошными толстыми линиями
Чаще всего используется следующий алгоритм проведения вычислений:
- Составление аксонометрической схемы, в которой перечисляются все элементы.
- На базе этой схемы рассчитывается длина каждого канала.
- Измеряется расход воздуха.
- Определяется скорость потока и давление на каждом участке системы.
- Выполняется расчет потерь на трение.
- С использованием нужного коэффициента выполняется расчет потерь давления при преодолении локального сопротивления.
При выполнении расчетов на каждом участке сети воздухораспределения получаются разные результаты. Все данные нужно уравнять посредством диафрагм с веткой наибольшего сопротивления.
Вычисление площади сечения и диаметра
Правильный расчет площади круглых и прямоугольных сечений очень важен. Неподходящий размер сечения не позволит обеспечить нужный воздушный баланс.
Слишком большой воздуховод займет много места и уменьшит эффективную площадь помещения. Если выбрать слишком маленький размер каналов, будут появляться сквозняки, так как увеличится давление потока.
Для того, чтобы рассчитать необходимую площадь сечения (S), нужно знать значения расхода и скорости движения воздуха.
Для вычислений используется следующая формула:
S = L/3600*V,
при этом L – расход воздуха (м³/ч), а V – его скорость (м/с);
Используя следующую формулу, можно посчитать диаметр воздуховода (D):
D = 1000*√(4*S/π), где
S – площадь сечения (м²);
π – 3,14.
Если планируется установка прямоугольных, а не круглых воздуховодов, вместо диаметра определяют необходимую длину/ширину воздушного канала.
Все полученные значения сопоставляют со стандартами ГОСТ и выбирают изделия, наиболее близкие по диаметру или площади сечения
При выборе такого воздуховода в расчет берется примерное сечение. Используется принцип a*b ≈ S, где a – длина, b – ширина, а S – площадь сечения.
Согласно нормативам, соотношение ширины и длины не должно быть выше 1:3. Также следует пользоваться таблицей типовых размеров, предоставляемой заводом-изготовителем.
Чаще всего встречаются такие размеры прямоугольных каналов: минимальные габариты – 0,1 м х 0,15 м, максимальные – 2 м х 2 м. Преимущество круглых воздуховодов в том, что они отличаются меньшим сопротивлением и, соответственно, создают меньше шума при работе.
Расчет потери давления на сопротивление
По мере продвижения воздуха по магистрали создается сопротивление. Для его преодоления вентилятор приточной установки создает давление, которое измеряют в Паскалях (Па).
Потерю давления можно снизить, увеличив сечение воздуховода. При этом может быть обеспечена примерно одинаковая скорость потока в сети
Для того, чтобы подобрать подходящую приточную установку с вентилятором нужной производительности, необходимо рассчитать потерю давления на преодоление локального сопротивления.
Применяется эта формула:
P=R*L+Ei*V2*Y/2, где
R – удельная потеря давления на трение на определенном участке воздуховода;
L – длина участка (м);
Еi – суммарный коэффициент локальной потери;
V – скорость воздуха (м/с);
Y – плотность воздуха (кг/м3).
Значения R определяются по нормативам. Также этот показатель можно рассчитать.
Если сечение воздуховода круглое, потери давления на трение (R) рассчитываются следующим образом:
R = (X*D/В) * (V*V*Y)/2g, где
X – коэфф. сопротивления трения;
L – длина (м);
D – диаметр (м);
V – скорость воздуха (м/с), а Y – его плотность (кг/ м³);
g – 9,8 м/с².
Если же сечение не круглое, а прямоугольное, в формулу необходимо подставить альтернативный диаметр, равный D = 2АВ/(А + В), где А и В – стороны.