Магический квадрат — виды, правила и примеры решения

Содержание:

Таблица квадратов натуральных чисел 100 до 200

1012 = 10 201
1022 = 10 404
1032 = 10 609
1042 = 10 816
1052 = 11 025
1062 = 11 236
1072 = 11 449
1082 = 11 664
1092 = 11 881
1102 = 12 100

1112 = 12 321
1122 = 12 544
1132 = 12 769
1142 = 12 996
1152 = 13 225
1162 = 13 456
1172 = 13 689
1182 = 13 924
1192 = 14 161
1202 = 14 400

1212 = 14 641
1222 = 14 884
1232 = 15 129
1242 = 15 376
1252 = 15 625
1262 = 15 876
1272 = 16 129
1282 = 16 384
1292 = 16 641
1302 = 16 900

1312 = 17 161
1322 = 17 424
1332 = 17 689
1342 = 17 956
1352 = 18 225
1362 = 18 496
1372 = 18 769
1382 = 19 044
1392 = 19 321
1402 = 19 600

1412 = 19 881
1422 = 20 164
1432 = 20 449
1442 = 20 736
1452 = 21 025
1462 = 21 316
1472 = 21 609
1482 = 21 904
1492 = 22 201
1502 = 22 500

1512 = 22 801
1522 = 23 104
1532 = 23 409
1542 = 23 716
1552 = 24 025
1562 = 24 336
1572 = 24 649
1582 = 24 964
1592 = 25 281
1602 = 25 600

1612 = 25 921
1622 = 26 244
1632 = 26 569
1642 = 26 896
1652 = 27 225
1662 = 27 556
1672 = 27 889
1682 = 28 224
1692 = 28 561
1702 = 28 900

1712 = 29 241
1722 = 29 584
1732 = 29 929
1742 = 30 276
1752 = 30 625
1762 = 30 976
1772 = 31 329
1782 = 31 684
1792 = 32 041
1802 = 32 400

1812 = 32 761
1822 = 33 124
1832 = 33 489
1842 = 33 856
1852 = 34 225
1862 = 34 596
1872 = 34 969
1882 = 35 344
1892 = 35 721
1902 = 36 100

1912 = 36 481
1922 = 36 864
1932 = 37 249
1942 = 37 636
1952 = 38 025
1962 = 38 416
1972 = 38 809
1982 = 39 204
1992 = 39 601
2002 = 40 000

Что случится, если это произойдёт?

Данный вопрос подразумевает поиск плюсов от получения желаемого. Под словом «это» следует иметь в виду реализацию принимаемого решения

Первый вопрос является наиболее очевидным и по этой причине очень важно находить как можно больше ответов, т.е. не останавливаться на том, что первым приходит на ум

Ответы на этот вопрос будут служить вам мотивацией к принятию решения.

Что случится, если я поменяю род деятельности?

  • Если я поменяю род деятельности, я сделаю первый шаг к своей мечте – заниматься тем, чем мне действительно нравится.
  • Если я поменяю род деятельности, я смогу перестать работать «на дядю» и сам контролировать и свою работу, и свой доход.
  • Если я поменяю род деятельности, это скажет о моей смелости, и я стану больше уважать самого себя.
  • Если я поменяю род деятельности, я смогу доказать тем, кто меня окружает, что серьёзно намерен изменить свою жизнь.
  • Если я поменяю род деятельности, это станет моей мотивацией к получению новых знаний, овладению новыми навыками.
  • Если я поменяю род деятельности, смогу скорее начать заниматься чем-то новым.
  • Если я поменяю род деятельности, я перестану сомневаться насчёт правильности своего выбора.

Как читать формулы сокращенного умножения

Учимся проговаривать формулы сокращенного выражения:

  1. Разность квадратов двух выражений равна произведению их разности и их суммы.
  2. Квадрат суммы двух выражений равен квадрату первого плюс удвоенное произведение первого на второе плюс квадрат второго.
  3. Квадрат разности двух выражений равен квадрату первого минус удвоенное произведение первого на второе плюс квадрат второго.
  4. Сумма кубов двух выражений равна произведению суммы первого и второго на неполный квадрат их разности.
  5. Разность кубов двух выражений равна произведению разности первого и второго на неполный квадрат их суммы.
  6. Куб суммы двух выражений равен кубу первого плюс утроенное произведение квадрата первого на второе плюс утроенное произведение первого на квадрат второго плюс куб второго.
  7. Куб разности двух выражений равен кубу первого минус утроенное произведение квадрата первого на второе плюс утроенное произведение первого на квадрат второго минус куб второго.

Свойства степеней:

Произведение степеней. При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

am · an = am + n

62 · 64 = 62+4 = 66

Частное степеней. При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

am / an = am – n

64 / 62 = 64 – 2 = 62

Возведение степени в степень. При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(an) m = an · m

(64)6 = 64 · 6 = 624

Степень произведения. При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

(a · b)n = an · bn

(6 · 6)3 = 63 · 63

Степень частного (дроби). Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй. При возведении в степень дроби нужно возвести в степень и числитель, и знаменатель.

(a / b)n = an / bn

(6 / 6)3 = 63 / 63

Примечание:  Фото https://www.pexels.com, https://pixabay.com

Найти что-нибудь еще?

карта сайта

Коэффициент востребованности
535

Конвертация других единиц измерения площади

Иностранные единицы измерения тоже обозначают квадратный метр. Только для этого их следует правильно конвертировать. Сделать это можно при помощи простого математического расчета:

  • Квадратные футы – умножение на 0,093 (точный курс – 0,093903). Замеряют длину и ширину в футах, перемножают их. Получают квадратный фут. Один фут равен 0,093 квадратным метрам. Полученный результат в квадратных футах умножают на 0,093 и получают квадратный метр. Пример: 13,41 ft х 0,093 = 1,24713 кв. м. Округление – 1,25 кв. м.
  • Ярды – умножение на 0,84 (точный курс – 0,83613). Все делают тоже самое что и при переводе из квадратных футов в квадратные метры. Пример: 24,7 yard х 0,84 = 20,748 кв. м. Округление – 20,75 кв. м.
  • Акры – умножение на 4050 (точный курс – 4046,9). Повторяем процедуру. Пример: 55,3 acres х 4050 = 224014,77 кв. м. Округление – 224015 кв. м.

Количественно футовые или ярдовые значения предстают всегда большими, чем метровые.

На таблицу ориентируются тогда, когда переводят из одной единицы измерения в другую Источник 3mu.ru

Расчет квадратных метров площади

Для вычислений понадобится сантиметровая лента или рулетка. При помощи них делают замеры сторон геометрической фигуры правильной формы (прямоугольник, квадрат и другие варианты). Затем все перемножают. После полученных результатов сантиметры необходимо перевести в метры.

Алгоритм:

  • Взять ленту или рулетку, на полотно которых нанесены деления в такой же системе измерения – сантиметры или метры.
  • Измерить длину объекта в двухмерном пространстве – плоскости.
  • Измерить ширину объекта. Край измерительного приспособления с нулевым значением располагают под углом 90° по отношению к длине в углу фигуры.
  • При невозможности сделать замер за один раз, отмерить часть плоскости до конца рулетки (ленты), поставить карандашом или маркером отметку, начать от нее замер следующего участка. Продолжить до конца всей длины или ширины. Цифры записать и сложить.
  • Все полученные значения записать.
  • Цифровое значение длины при помощи калькулятора умножают на цифровое значение ширины – получают число, обозначающее площадь.

Пример:

Длина – 3,42 м

Ширина – 2,15 м

3,42 х 2,15 = 7,353

Округляем до двухзначного числа после запятой – 7,35 кв. м


В любой проектной или технической документации указана длина и ширина объектаИсточник vestnikao.ru

Часто результат не представлен в форме целого числа – в нем отражены как метры, так и сантиметры. Поэтому нужно перевести сантиметры в метры. Тогда легче будет перемножать числа. Пример: 3 метра 78 сантиметров. Один сантиметр равен 0,01 метрам. Перевод осуществляется простым приемом – переносом запятой числа «0,01» на 2 цифры назад (влево).

Пример расчета:

78 см = 0,78 м

3 м 78 см = 3 м + 78 см = 3,78 м

Если взять метровую ленту или рулетку, конечно же, считать будет проще – не понадобится переводить полученные числовые значения в метры. Замеры длины, ширины осуществляют от одной точки (угла) до другой, противоположной точки (угла). Если получается не целое число, то считают не только метры, но и сантиметры. Пример: 3,55 м – 3 метра и 55 сантиметра.


Длина или ширина измеряется строго от одного угла к противоположном по стенеИсточник mypresentation.ru

Когда числа получаются меньше одного метра в миллиметрах, тогда делают округление к ближайшему сантиметру. Пример: 2 метра 4 сантиметра и 3 миллиметра записывают как 2,4 м. Но при установке мебельного каркаса важна абсолютная точность. Поэтому здесь выверяют все до миллиметров. Особенно это касается встраиваемых в стеновые ниши шкафов.

Что случится, если это НЕ произойдёт?

Данный вопрос подразумевает поиск плюсов от неполучения желаемого. Другими словами, ответы на второй вопрос покажут вам, что случится, если вы откажетесь от реализации принимаемого решения, и всё останется так же, как и было раньше. Отвечая, записывайте все преимущества настоящего положения дел, которые вы не хотели бы потерять.

Что случится, если я не поменяю род деятельности?

  • Если я не поменяю род деятельности, мне не нужно будет отказываться от привычного образа жизни.
  • Если я не поменяю род деятельности, я не буду переживать по поводу того, что придётся осваивать новые знания и учиться новым вещам, ведь это может не получиться.
  • Если я не поменяю род деятельности, я смогу спокойно отдыхать в свои выходные дни.
  • Если я не поменяю род деятельности, мне не нужно будет ни перед кем объясняться или оправдываться.
  • Если я не поменяю род деятельности, я смогу подумать об этом в будущем. Возможно, действительно стоит повременить.
  • Если я не поменяю род деятельности, я смогу предаваться грёзам о том, как занимаюсь тем, что мне действительно нравится.
  • Если я не поменяю род деятельности, я докажу окружающим меня людям, что меня устраивает текущее положение дел.

Чего НЕ случится, если это НЕ произойдёт?

Данный вопрос подразумевает поиск минусов от неполучения желаемого. Отвечая на четвёртый вопрос, вы отсекаете оставшиеся «не», мешающие реализации принимаемого решения. На этом этапе рекомендуется отвечать как можно быстрее, опираясь на интуицию.

Чего не случится, если я не поменяю род деятельности?

  • Если я не поменяю род деятельности, у меня не появится возможности реализовать свою мечту – зарабатывать, занимаясь тем, что мне действительно нравится.
  • Если я не поменяю род деятельности, я не смогу перестать работать «на дядю», а значит, не смогу самостоятельно контролировать свою работу и свой доход.
  • Если я не поменяю род деятельности, я не стану больше уважать себя, т.к. покажу страх перед переменами в жизни.
  • Если я не поменяю род деятельности, никто (в том числе и я сам) не поверит в серьёзность моих намерений изменить жизнь.
  • Если я не поменяю род деятельности, у меня так и не появится мотивации к получению новых знаний и овладению новыми навыками.
  • Если я не поменяю род деятельности, я не смогу избавиться от своих сомнений и так и останусь в переживаниях по поводу того, что не принял решения.

На самом деле, применять Квадрат Декарта можно не только к сфере профессиональной деятельности, но и к любой другой области жизни

Но важно раз и навсегда уяснить, что все свои ответы нужно именно записывать, а не отвечать мысленно. Во-первых, вы можете просто запутаться в своих ответах, а во-вторых, подсознание человека работает таким образом, что игнорирует частицу «НЕ», по причине чего велика вероятность допущения ошибок

Поэтому, обязательно используйте листок и ручку, можно даже распечатать Квадрат в большом формате, и отвечать на каждый из вопросов в соответствующем секторе. А сам процесс записи ответов будет как бы конвертировать мысленные доводы и фантазии в логическую буквенную форму, что и окажет вам существенную помощь в принятии решения.

Квадрат Декарта — одна из многочисленных техник, глобально применяемых для управления временем. Больше таких техник мы разбираем на курсе «Лучшие техники тайм-менеджмента». Присоединяйтесь!

Доказательство формул сокращенного умножения

Напомним, что разность квадратов двух чисел a и b равна произведению их разности и их суммы: a2 — b2 = (a — b) * (a + b).

Иначе говоря, произведение суммы a и b на их разность равна разности их квадратов: (a — b) * (a + b) = a2 — b2.

Важно знать, что разность квадратов не равна квадрату разности: a2 — b2 ≠ (a — b)2. Докажем, что a2 — b2 = (a — b) * (a + b)

Докажем, что a2 — b2 = (a — b) * (a + b).

Поехали:

  1. Используя искусственный метод, прибавим и отнимем одно и тоже a * b.

    + a * b — a * b = 0

    a2 — b2 = a2 — b2 + ab — ab

  1. Сгруппируем иначе: a2 — b2 + a * b — a * b = a2 — a * b + a * b — b2
  2. Продолжим группировать: a2 — a * b — b2 +a * b = (a2 — a * b) + (a * b — b2)
  3. Вынесем общие множители за скобки:

    (a2 — a * b) + (a * b — b2) = a *(a — b) + b *(a — b)

  1. Вынесем за скобки (a — b). a * (a — b) + b * (a — b) = (a — b) * (a + b)
  2. Результат доказательства: a2 — b2 = (a — b) * (a + b)
  3. Для того, чтобы доказать в обратную сторону: (a — b) * (a + b) = a2 — b2, нужно раскрыть скобки: (a — b) * (a + b) = a * a + a * b — b * a — b * b = a2 — b2.

Остальные ФСУ можно доказать аналогичным методом.

Свойства

  • Четыре различных квадрата не могут образовывать арифметическую прогрессию. Арифметические прогрессии из трёх квадратов существуют — например: 1, 25, 49.
  • Каждое натуральное число может быть представлено как сумма четырёх квадратов (теорема Лагранжа о сумме четырёх квадратов).
  • 4900 — единственное число > 1, которое является одновременно квадратным и пирамидальным.
  • Суммы пар последовательных треугольных чисел являются квадратными числами.
  • Последняя цифра квадрата в десятичной записи может быть равной 0, 1, 4, 5, 6 или 9 (квадратичные вычеты по модулю 10).
  • Квадрат не может оканчиваться нечётным количеством нолей.
  • Квадрат либо делится на 4, либо при делении на 8 даёт остаток 1. Квадрат либо делится на 9, либо при делении на 3 даёт остаток 1.
  • Две последние цифры квадрата в десятичной записи могут принимать значения 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89 или 96 (квадратичные вычеты по модулю 100). Зависимость предпоследней цифры квадрата от последней можно представить в виде следующей таблицы:
последняяцифра предпоследняяцифра
5 2
1, 4, 9 чётная
6 нечётная

В геометрии

Есть несколько основных применений функции квадрата в геометрии.

Название функции квадрата показывает ее важность в определении площади : она проистекает из того факта, что площадь квадрата со сторонами длиной   l равна l 2. Площадь квадратично зависит от размера: площадь формы в n  раз больше, в n 2  раза больше

Это справедливо для площадей в трех измерениях, а также на плоскости: например, площадь поверхности сферы пропорциональна квадрату ее радиуса, что физически проявляется в законе обратных квадратов, описывающем, как сила физического силы, такие как гравитация, зависят от расстояния.

Зональные пластины Френеля имеют кольца с одинаковыми квадратами расстояний до центра.

Функция квадрата связана с расстоянием через теорему Пифагора и ее обобщение, закон параллелограмма . Евклидово расстояние не является гладкой функцией : трехмерный график расстояния от фиксированной точки образует конус с негладкой точкой на вершине конуса. Однако квадрат расстояния (обозначаемый d 2 или r 2 ), график которого имеет параболоид , является гладкой и аналитической функцией .

Скалярное произведение из евклидовой вектора с самим собой, равна квадрату его длины: vv = v 2 . Это далее обобщается на квадратичные формы в линейных пространствах через внутреннее произведение . Тензор инерции в механике является примером квадратичной формы. Он демонстрирует квадратичную зависимость момента инерции от размера ( длины ).

Существует бесконечно много пифагоровых троек , наборов из трех натуральных чисел, таких, что сумма квадратов первых двух равна квадрату третьего. Каждая из этих троек дает целые стороны прямоугольного треугольника.

Как пользоваться таблицей квадратов по схеме:

Чтобы возвести число в квадрат, нужно выбрать десятку и единицу числа, которое необходимо возвести во вторую степень, и на их пересечении будет число, которое получается за счет умножения этого числа на себя.

Например: рассмотрим на картинке ниже число 1849. Оно получилось за счет умножения числа 43 на 43 (43 во второй степени), в котором “4”- это десятка, а “3” – единица.

Или другой пример: число 4356 получилось за счет умножения числа 66 на 66 (66 во второй степени), в котором “6” сбоку – это десятка, а “6” сверху – единица.

Таблица квадратов:

Вторую степень называют “квадратом числа”. При этом умножение числа самого на себя происходит один раз (a · a).

Квадратное число в геометрическом представлении может выглядеть, как квадрат. Например, число 9 – можно представить в виде квадрата из 9 точек, где стороны квадрата будут составлять по 3 точки.

Другое использование

Квадраты вездесущи в алгебре, в более общем смысле, почти во всех отраслях математики, а также в физике, где многие единицы определяются с помощью квадратов и обратных квадратов: см. .

Метод наименьших квадратов — стандартный метод, используемый для переопределенных систем .

Возведение в квадрат используется в статистике и теории вероятностей при определении стандартного отклонения набора значений или случайной величины . Отклонение каждого значения  x i от среднего  значения набора определяется как разность . Эти отклонения возводятся в квадрат, затем для нового набора чисел (каждое из которых положительно) берется среднее значение. Это среднее значение представляет собой дисперсию , а его квадратный корень — стандартное отклонение. В области финансов , то волатильность финансового инструмента представляет собой стандартное отклонение ее значения.
Икс¯{\ displaystyle {\ overline {x}}}Икся-Икс¯{\ displaystyle x_ {i} — {\ overline {x}}}

Чего НЕ случится, если это произойдёт?

Данный вопрос подразумевает поиск минусов от получения желаемого. Проще говоря, ответы на третий вопрос будут представлять собой ту цену, которую вы должны будете заплатить за реализацию принимаемого решения.

Чего не случится, если я поменяю род деятельности?

  • Если я поменяю род деятельности, я уже не смогу жить той жизнью, к которой так привык за много лет.
  • Если я поменяю род деятельности, я уже не смогу откладывать действия по поиску новых возможностей.
  • Если я поменяю род деятельности, я уже не смогу отдыхать в привычные для меня выходные дни.
  • Если я поменяю род деятельности, у меня уже не будет достаточного количества времени на бесцельное, но приятное времяпрепровождение.
  • Если я поменяю род деятельности, у меня уже не будет возможности общаться с прежними коллегами и ходить на весёлые корпоративы.
  • Если я поменяю род деятельности, ко мне уже не будет прежнего отношения окружающих меня людей.

Дополнительные формулы сокращенного умножения

К таблице основных ФСУ следует добавить еще несколько важных тождеств, которые пригодятся для решения задач.

Бином Ньютона

Формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных. Записывается вот так:

Пример вычисления биномиальных коэффициентов, которые стоят в строке под номером n в треугольнике Паскаля:

ФСУ для квадрата и куба суммы и разности — являются частными случаями формулы бинома Ньютона при n = 2 и n = 3.

Формула возведения в квадрат суммы трех, четырех и более слагаемых

Пригодится, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два. 

(a1+a2+…+an)2 = a12 + a22 + … + an-12 + an2 + 2 * a1 * a2 + 2 * a1 * a3 + 2 * a1 * a4 + … +

+ 2 * a1 * an-1 + 2 * a1 * an + 2 * a2 * a3 + 2 * a2 * a4 + … + 2 * a2 * an-1 + 2 * a2 * an +…+

+ 2 * an-1 * an

Читается так: квадрат суммы n слагаемых равен сумме квадратов всех этих слагаемых и удвоенных произведений всех возможных пар этих слагаемых.

Формула разности n-ых степеней двух слагаемых

an − bn = (a − b) * (an-1 + an-2 * b + an-3 * b2 + … + a * bn-2 + bn-1).

Для четных показателей можно записать так:

a2*m − b2*m = (a2 − b2) *(a2*m−2 + a2*m−4 * b2 + a2*m−6 * b4 + … + b2*m−2).

Для нечетных показателей:

a2*m+1 − b2*·m+1 = (a − b) * (a2*m + a2*m−1 * b + a2*m−2 * b2 + … + b2*m).

Частными случаями являются формулы разности квадратов и кубов при n = 2 и n = 3. Для разности кубов b можно также заменить на −b.

Как пользоваться Квадратом Декарта?

Для использования Квадрата Декарта вам понадобится листок бумаги, ручка или карандаш. Как только эти инструменты будут готовы, вы можете приступать к работе с Квадратом, которая подразумевает ответы на четыре основных вопроса. Эти четыре вопроса можно образно представить как четыре пункта наблюдения за проблемой, с которых можно рассмотреть проблему с разных сторон и получить о ней наиболее объективное представление

И ещё: очень важно дать на каждый из четырёх вопросов как можно большее количество ответов, т.к. это позволит рассмотреть максимальное количество особенностей проблемы

Итак, Квадрат Декарта выглядит следующим образом:


Задаём себе последовательно четыре вопроса и отвечаем на них следующим образом:Для наглядного рассмотрения принципа работы Квадрата Декарта давайте возьмём тот же пример с изменением рода деятельности, который мы рассматривали выше.

Таблица квадратов натуральных чисел от 1 до 99

единицыдесятки 1 2 3 4 5 6 7 8 9
1 4 9 16 25 36 49 64 81
1 100 121 144 169 196 225 256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801
Таблица квадратов до 1012 = 122 = 432 = 942 = 1652 = 2562 = 3672 = 4982 = 6492 = 81102 = 100 Таблица квадратов до 20112 = 121122 = 144132 = 169142 = 196152 = 225162 = 256172 = 289182 = 324192 = 361202 = 400 Таблица квадратов до 30212 = 441222 = 484232 = 529242 = 576252 = 625262 = 676272 = 729282 = 784292 = 841302 = 900 Таблица квадратов до 40312 = 961322 = 1024332 = 1089342 = 1156352 = 1225362 = 1296372 = 1369382 = 1444392 = 1521402 = 1600 Таблица квадратов до 50412 = 1681422 = 1764432 = 1849442 = 1936452 = 2025462 = 2116472 = 2209482 = 2304492 = 2401502 = 2500
Таблица квадратов до 60512 = 2601522 = 2704532 = 2809542 = 2916552 = 3025562 = 3136572 = 3249582 = 3364592 = 3481602 = 3600 Таблица квадратов до 70612 = 3721622 = 3844632 = 3969642 = 4096652 = 4225662 = 4356672 = 4489682 = 4624692 = 4761702 = 4900 Таблица квадратов до 80712 = 5041722 = 5184732 = 5329742 = 5476752 = 5625762 = 5776772 = 5929782 = 6084792 = 6241802 = 6400 Таблица квадратов до 90812 = 6561822 = 6724832 = 6889842 = 7056852 = 7225862 = 7396872 = 7569882 = 7744892 = 7921902 = 8100 Таблица квадратов до 100912 = 8281922 = 8464932 = 8649942 = 8836952 = 9025962 = 9216972 = 9409982 = 9604992 = 98011002 = 10000

Двойной порядок

Если головоломка имеет порядок двойной чётности, количество окон в каждой горизонтальной строчке или вертикальном столбце должно делиться на 4. Минимальной фигурой с такими свойствами будет таблица 4х4.

Решать магические квадраты двойной чётности следует по тому же алгоритму, что и остальные. Первый шаг при заполнении — вычисление магической константы. Формула применяется та же, что для расчёта других квадратов. Для фигуры со стороной 4 клетки значение константы будет равно 34.

В каждом углу основного поля выделяются промежуточные таблицы. Их размер должен быть равен n/4. Эти области обозначают буквами A, B, C, D, располагая их против хода часовой стрелки. Величина промежуточных фигур зависит от размера исходного квадрата:

  1. Если длина стороны составляет 4 ячейки, промежуточные зоны будут иметь по 1 клетке.
  2. В таблице 8х8 эти области включают 4 элемента (2х2).
  3. В квадрате 12х12 выделяются промежуточные фигуры размером 3х3.

Следующий этап — создание центрального промежуточного квадрата. Величина его стороны должна составлять n/2. Эта фигура не должна накладываться на периферические, но при этом соприкасаться с ними углами.

Далее в квадрат вносят цифры слева направо. Их допускается ставить только в свободные ячейки, которые входят в состав промежуточных областей. Например, при заполнении таблицы 4х4 порядок действий будет таким:

  1. В первой сверху строке и первом слева столбце пишется 1. В верхней клетке четвертого столбика — 4.
  2. В центр второй горизонтальной строчки ставятся цифры 6 и 7.
  3. В четвёртой строке слева пишется 13, а справа — 16.

По этому же принципу цифрами заполняются оставшиеся клетки. Числа проставляются слева в порядке уменьшения. Если всё сделано верно, сумма всех чисел в любой строчке будет одинаковой.

В абстрактной алгебре и теории чисел

Функция квадрата определяется в любом поле или кольце . Элемент в изображении этой функции называется квадратом , а прообразы квадрата — квадратными корнями .

Понятие возведения в квадрат особенно важно в конечных полях Z / p Z, образованных числами по модулю нечетного простого числа p. Ненулевой элемент этого поля называется квадратичным вычетом, если он является квадратом в Z / p Z , в противном случае он называется квадратичным невычетом

Ноль, будучи квадратом, не считается квадратичным остатком. Каждое конечное поле этого типа имеет ровно ( p — 1) / 2 квадратичных вычетов и ровно ( p — 1) / 2 квадратичных невычетов. Квадратичные вычеты образуют группу при умножении. Свойства квадратичных вычетов широко используются в теории чисел .

В более общем смысле, в кольцах функция квадрата может иметь разные свойства, которые иногда используются для классификации колец.

Ноль может быть квадратом некоторых ненулевых элементов. Коммутативное кольцо не таким образом, что квадрат ненулевого элемента никогда не равна нулю, называется приведенное кольцо . В более общем смысле, в коммутативном кольце радикальный идеал — это идеал  I , из которого следует . Оба понятия важны в алгебраической геометрии из-за Nullstellensatz Гильберта .
Икс2∈я{\ displaystyle x ^ {2} \ in I}Икс∈я{\ displaystyle x \ in I}

Элемент кольца, равный его собственному квадрату, называется идемпотентом . В любом кольце 0 и 1 — идемпотенты.Других идемпотентов в полях и вообще в целостных областях нет . Однако кольцо целых чисел по модулю  n имеет 2 k идемпотентов, где k — количество различных простых делителей числа  n . Коммутативное кольцо, в котором каждый элемент равен своему квадрату (каждый элемент идемпотентен), называется булевым кольцом ; Примером из информатики является кольцо, элементы которого являются двоичными числами , с побитовым И в качестве операции умножения и поразрядным исключающим ИЛИ в качестве операции сложения.

В упорядоченном кольце , х 2 ≥ 0 для любых х . Более того, x 2 = 0  тогда и только тогда, когда  x = 0 .

В суперкоммутативной алгебре, где 2 обратимо, квадрат любого нечетного элемента равен нулю.

Если A — коммутативная полугруппа , то

∀Икс,у∈А(Иксу)2знак равноИксуИксузнак равноИксИксуузнак равноИкс2у2.{\ displaystyle \ forall x, y \ in A \ quad (xy) ^ {2} = xyxy = xxyy = x ^ {2} y ^ {2}.}

На языке квадратичных форм это равенство означает, что функция квадрата — это «форма, допускающая композицию». Фактически, функция квадрата — это основа, на которой строятся другие квадратичные формы, которые также допускают композицию. Процедура была введена Л. Е. Диксоном для получения октонионов из кватернионов путем удвоения. Метод удвоения был формализован А. А. Альбертом, который начал с поля действительных чисел ℝ и функции квадрата, удвоив его, чтобы получить поле комплексных чисел с квадратичной формой x 2 + y 2 , а затем снова удвоить, чтобы получить кватернионы. Процедура удвоения называется конструкцией Кэли – Диксона и была обобщена для формирования алгебр размерности 2 n над полем F с инволюцией.

Квадратная функция z 2 является «нормой» композиционной алгебры ℂ, где тождественная функция образует тривиальную инволюцию, с которой начинается построение Кэли – Диксона, приводящее к композиционным алгебрам бикомплексов, бикватернионов и биоктонионов.

Таблица квадратов натуральных чисел 200 до 300

2012 = 40 401
2022 = 40 804
2032 = 41 209
2042 = 41 616
2052 = 42 025
2062 = 42 436
2072 = 42 849
2082 = 43 264
2092 = 43 681
2102 = 44 100

2112 = 44 521
2122 = 44 944
2132 = 45 369
2142 = 45 796
2152 = 46 225
2162 = 46 656
2172 = 47 089
2182 = 47 524
2192 = 47 961
2202 = 48 400

2212 = 48 841
2222 = 49 284
2232 = 49 729
2242 = 50 176
2252 = 50 625
2262 = 51 076
2272 = 51 529
2282 = 51 984
2292 = 52 441
2302 = 52 900

2312 = 53 361
2322 = 53 824
2332 = 54 289
2342 = 54 756
2352 = 55 225
2362 = 55 696
2372 = 56 169
2382 = 56 644
2392 = 57 121
2402 = 57 600

2412 = 58 081
2422 = 58 564
2432 = 59 049
2442 = 59 536
2452 = 60 025
2462 = 60 516
2472 = 61 009
2482 = 61 504
2492 = 62 001
2502 = 62 500

2512 = 63 001
2522 = 63 504
2532 = 64 009
2542 = 64 516
2552 = 65 025
2562 = 65 536
2572 = 66 049
2582 = 66 564
2592 = 67 081
2602 = 67 600

2612 = 68 121
2622 = 68 644
2632 = 69 169
2642 = 69 696
2652 = 70 225
2662 = 70 756
2672 = 71 289
2682 = 71 824
2692 = 72 361
2702 = 72 900

2712 = 73 441
2722 = 73 984
2732 = 74 529
2742 = 75 076
2752 = 75 625
2762 = 76 176
2772 = 76 729
2782 = 77 284
2792 = 77 841
2802 = 78 400

2812 = 78 961
2822 = 79 524
2832 = 80 089
2842 = 80 656
2852 = 81 225
2862 = 81 796
2872 = 82 369
2882 = 82 944
2892 = 83 521
2902 = 84 100

2912 = 84 681
2922 = 85 264
2932 = 85 849
2942 = 86 436
2952 = 87 025
2962 = 87 616
2972 = 88 209
2982 = 88 804
2992 = 89 401
3002 = 90 000

История и современное применение

Первые подобные таблицы использовались ещё в Древней Греции и Китае. Это подтверждено археологическими находками. Арабы называли квадраты магическими, так как верили, что они обладают волшебными свойствами и могут защитить от многих напастей.

В середине XVI в. вопросом о том, как работает магический квадрат, заинтересовались математики в Европе. Они начали активно исследовать загадочные сочетания цифр. Учёные стремились вывести общие принципы построения квадратов и найти всё множество возможных вариантов.

С их помощью школьники учатся планировать свою работу и контролировать её. В клетки можно вписывать не только отдельные цифры, но и математические выражения. Задачи на эту тему часто предлагаются на математических олимпиадах. Решать такие числовые задачи можно и онлайн.

Одинарная чётность

Магические квадраты могут иметь порядок одинарной или двойной чётности. Для каждого случая предусмотрена отдельная методика вычисления. У таблиц одинарной чётности количество клеток в одной строке или столбце делится пополам, но не делится на четыре. Наименьшим квадратом, отвечающим этому требованию, будет прямоугольник 6х6. Фигуру 2х2 построить и заполнить невозможно.

Вычисление магической константы

Первый этап расчётов проводится по формуле / 2, где символом n обозначено число клеток в одном ряду. Если взять за пример квадрат 6х6, расчёт будет выглядеть следующим образом: : 2 = (6 х 37): 2 = 222:2.

Волшебная постоянная прямоугольника со стороной 6 клеток равна 111. Общая сумма чисел от 1 до 36 в каждой строке и в разных направлениях должна быть равна 111.

Рисунок делится на 4 одинаковые части. В каждой будет по 9 клеток (3х3). Каждую часть обозначают латинскими буквами: А — верхняя левая, С — верхняя правая, D — нижняя левая и В — нижняя правая часть. Если квадрат имеет другой размер, n делится на 2, чтобы узнать точную величину каждой из 4 частей.

Дальнейшие действия

Следующий шаг — вписывание в каждую часть ¼ всех чисел. В квадрант А вносятся числа от 1 до 9, в квадрант В — от 10 до 18, в части С — от 19 до 27, в D — от 28 до 36.

Последовательность вписывания такая же, как при заполнении простейшего нечётного квадрата:

  1. Минимальное число, которым начинается заполнение ячеек, всегда ставится в верхнем ряду посередине. У каждой части эта ячейка находится отдельно.
  2. Каждая часть заполняется как новый математический объект. Даже если есть пустое место в другом квадрате, его в этих случаях игнорируют.

Алгоритм действий:

  1. Начинать нужно с крайней левой клетки в верхней строке. Если фигура имеет размеры 6х6, выделяется только первая верхняя строка части А. В ней должно быть вписано число 8. Если величина таблицы составляет 10х10, выделяют 2 первые клетки в верхнем ряду. В них стоят 17 и 24.
  2. Из выделенных клеток формируется промежуточный квадрат. В таблице с количеством строк и столбцов 6х6 он будет состоять из 1 клетки. Его условно обозначают А1.
  3. Если размер 10х10, в верхней строке выделяется 2 первые ячейки. Вместе с ними выделяется ещё 2 клетки, во второй строке получается поле из 4 прилежащих друг к другу ячеек.
  4. В следующей строке первая ячейка пропускается, затем выделяется столько клеток, сколько было в промежуточной таблице А1. Полученную фигуру можно обозначить А2.
  5. Таким же способом строят промежуточный квадрат А3.
  6. Эти 3 промежуточных фигуры формируют выделенную область А.
  7. Далее переходят в квадрант D и формируют обособленную область D.

Квадрат нечётного порядка

Среди несложных магических квадратов по математике выделяют разновидности чётного и нечётного порядка. Первая группа подразделяется на таблицы одинарной и двойной чётности.

Начальным шагом во всех случаях будет определение магической константы. Делается это с помощью специальной формулы / 2. Разобраться с принципом решения задачи этого класса можно на самом простом примере. Для этого выстраивается таблица из 9 ячеек. В неё нужно расставить цифры от 1 до 9. Дальнейший алгоритм:

  1. Подсчитывается сумма, которая должна получиться в каждой строке. Для этого используется формула: 3 * (32 +1) / 2 = 3 * 10 / 2. Ответом будет число 15.
  2. Числа в ячейках расставляются так, чтобы сумма их была равна 15 в каждой строчке. Это требует смекалки и воображения.
  3. В средней клетке верхней строки вписывается 1.
  4. Каждое следующее число ставится справа по диагонали вверх. Поставить цифру 2 нельзя, так как выше нет строк. Если мысленно добавить сверху ещё один квадрат, цифра 2 окажется в его нижнем правом углу. Значит, цифра 2 вписывается в нижнюю правую клетку.
  5. По тому же принципу вписывается цифра 3. Она попадает в среднюю ячейку слева.
  6. Если нужная клетка уже занята, очередной символ вписывается ниже предыдущего. Таким образом, 4 ставится под 3.
  7. Записывается цифра 5 по диагонали вправо и вверх, а 6 в верхний угол справа.
  8. Поскольку место цифры 7 уже занято, она вписывается ниже 6.
  9. Восьмёрка занимает место в левом нижнем углу.
  10. Оставшуюся клетку занимает девятка.

Общий алгоритм выполнения задания: каждый следующий знак пишется вверх и правее. Если там нет клетки — дорисовывается ещё один воображаемый квадрат. Если ячейка занята — число записывается ниже предыдущего. Таким способом можно составить любой квадрат нечётного порядка, включая самые сложные, с больши́м числом ячеек.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector