Как сделать солнечную батарею в домашних условиях

Содержание:

Солнечная батарея своими руками из подручных средств и материалов в домашних условиях

Несмотря на то, что мы живём в современном и быстроразвивающимся мире – покупка и монтаж солнечных батарей остаётся уделом обеспеченных людей. Стоимость одной панели, которая будет вырабатывать всего лишь 100 Ватт варьируется от 6 до 8 тысяч рублей. Это не считая ещё то, что отдельно надо будет покупать конденсаторы, аккумуляторы, контроллер заряда, сетевой инвертор, преобразователь и другие вещи. Но если у вас нет большого количества средств, а хочется перейти на экологически чистый источник энергии то у нас для вас есть хорошие новости – солнечную батарею можно собрать в домашних условиях. И если следовать всем рекомендациям, КПД у неё будет не хуже, чем у собранного в промышленных масштабах варианта. В данной части мы рассмотрим пошаговую сборку

Также уделим внимание материалам, из которых можно собрать солнечные панели

Из диодов

Это один из самых бюджетных материалов. Если вы собрались делать солнечную батарею для дома из диодов, то помните, что с помощью данных компонентов собираются лишь небольшие солнечные батареи, способные запитать какие-либо незначительные гаджеты. Лучше всего подойдут диоды Д223Б. Это диоды советского образца, которые хороши тем, что имеют стеклянный корпус, из-за размера обладают высокой плотностью монтажа и имеют приятную цену.

После покупки диодов очистите их от краски – для этого достаточно поместить их в ацетон на пару часов. По прошествии данного времени она легко с них снимется.

Затем подготовим поверхность для будущего размещения диодов. Это может быть деревянная дощечка или любая другая поверхность. В ней требуется проделать отверстия на протяжении всей её площади Между отверстиями надо будет соблюдать расстояние от 2 до 4 мм.

После берём наши диоды и вставляем алюминиевыми хвостиками в данные отверстия. После этого хвостики требуется загнуть в отношении друг к другу и спаять для того, чтобы при получении солнечной энергии они распределяли электричество в одну “систему”.

Наша примитивная солнечная батарея из стеклянных диодов готова. На выходе она может давать энергию в пару вольт, что является неплохим показателем для кустарной сборки.

Из транзисторов

Этот вариант уже будет более серьёзный, чем диодный, но всё равно является образцом суровой ручной сборки.

Для того, чтобы сделать солнечную батарею из транзисторов вам понадобятся для начала сами транзисторы. Благо их можно купить практически на любом рынке или в магазинах электронной техники.

После покупки вам потребуется срезать крышку у транзистора. Под крышкой прячется самый главный и нужный нам элемент – полупроводниковый кристалл.

Затем вставляем их в каркас и спаиваем их между друг другом соблюдая нормы “ввода-вывода”.

На выходе такая батарея может давать мощность, которой хватит на осуществление работы, к примеру, калькулятора или маленькой диодной лампочки. Опять же такая солнечная батарея собирается чисто ради забавы и не представляет собой серьёзный “электропитательный” элемент.

Из алюминиевых банок

Данный вариант уже является более серьёзным в отличие от первых двух. Это тоже невероятно дешёвый и эффективный способ получить энергию. Единственное, на выходе её будет гораздо больше, чем в вариантах из диодов и транзисторов и она будет не электрическая, а тепловая. Всё что вам надо – большое количество алюминиевых банок и корпус. Хорошо подходит корпус из дерева. В корпусе лицевая часть должна быть закрыта оргстеклом. Без него батарея не будет эффективно работать.

Перед началом сборки надо покрасить алюминиевые банки чёрной краской. Это позволит им хорошо притягивать солнечный свет.

Затем с помощью инструментов на дне каждой банки пробиваются три отверстия. Наверху в свою очередь делается звездообразный вырез. Свободные концы загибаются наружу, что необходимо для того, чтобы происходила улучшенная турбулентность нагретого воздуха.

После данных манипуляций банки складываются в продольные линии (трубы) в корпус нашей батареи.

Затем между трубами и стенками/задней стенкой прокладывается слой изоляции (минеральная вата). Затем коллектор закрывается прозрачным сотовым поликарбонатом.

На этом процесс сборки завершён. Последним шагом является установка воздушного вентилятора в качестве двигателя для энергоносителя. Такая батарея хоть и не вырабатывает электричество, зато может эффективно прогреть жилое помещение. Конечно, это будет не полноценный радиатор, но прогрев небольшого помещения такой батарее под силу — например, для дачи отличный вариант. Про полноценные биметаллические радиаторы отопления мы говорили в статье — , в которой мы рассматривали подробно строение подобных батарей отопления, их технические характеристики и сравнивали производителей. Советую ознакомиться.

Отапливаем дом солнечной энергией

Если про реальную возможность обеспечить бытовые электроприборы «солнечным» током уже говорилось выше, то для обогрева жилья солнечной энергией существуют два варианта. И чтобы использовать солнечные батареи для отопления дома, нужно знать некоторые требования, обязательные для выполнения этой задачи.

Конечно, для отопления можно использовать и солнечные панели, но в этом случае нужно будет согласиться с тем, что на нагревание воды в бойлере с помощью ТЭНов потребуется львиная доля генерируемой батареями энергии. Простые расчеты показывают, что для нагревания бойлером 100 литров воды до 70–80 ⁰С требуется порядка 4 часов. За это время водяной котел с нагревателями на 2 кВт мощности потребит около 8 кВт. Если солнечные батареи в суммарной мощности смогут вырабатывать до 5 кВт в час, то проблем с энергообеспечением в доме не будет. Но если солнечные панели имеют площадь меньше 10 кв. метров, то такие мощности для полноценного обеспечения электрической энергией не подойдут.

Использование вакуумного коллектора для отопления дома оправдано в том случае, когда это полноценный жилой дом. Схема работы такой гелиосистемы обеспечивает теплом все жилище в течение круглого года.

Пошаговая инструкция

Итак, чтобы сделать солнечную батарею своими руками, Вы должны выполнить следующие действия:

Отрезаем от листа меди кусок такого размера, чтобы мы смогли расположить его на спирали электрической плитки. Для хорошего результата очищаем отрезанный кусок от пыли и грязи.

Далее размещаем его на спирали плиты. В связи с химическими реакциями, при нагревании медь станет меняться. Вот когда медь приобретет чёрный окрас, отсчитайте ещё 30 минут, чтобы слой чёрного цвета стал толстым.

Затем выключите электроприбор. Пусть кусок, предназначенный для изготовления солнечной батареи своими руками, остынет. Охлаждаясь, медь и медная окись станут с различной скоростью сжиматься. Тогда и начнется отслоение окиси.

  • Дождавшись, когда температура нашей детали снизится до нормальной, комнатной, мы берем и моем кусок меди подогретой водой. Не отскребайте чёрные остатки окиси!
  • Далее мы начинаем собирать самодельную солнечную батарею не выходя из дома. Все сделать очень легко.
  • Отрезаем ещё один кусок меди, соответствующий тому, что мы уже нагрели. Согнув 2 листа таким образом, чтобы они поместились в бутылку, не соприкасаясь друг с другом, цепляем к ним «крокодильчики», как показано на фото ниже. Завершая наш процесс по изготовлению солнечной батареи своими силами, подсоединяем шнур от нетронутого куска к плюсу, а шнур обработанного – к минусу. Далее добавляем несколько ложек соли в нагретую воду, и размешиваем до окончательного растворения. Затем переливаем полученный раствор в бутылку с кусками меди, но не до конца. Оставьте приблизительно два с половиной сантиметра от краев пластины.

Кстати, такая солнечная батарея может давать несколько миллиампер даже без солнца! Рекомендуем сразу же просмотреть более серьезный вариант использования альтернативных источников энергии, который мы описали в статье о том, как сделать освещение для дачи на солнечных батареях!

Обучающее видео о том, как в домашних условиях создать зарядное устройство

Самодельная солнечная батарея из полупроводниковых диодов или транзисторов

Необходимые для создания солнечной батареи р-n переходы есть и у полупроводниковых диодов, и у транзисторов. У диода 1 р-n переход, а транзистор имеет 2 таких перехода – между базой и коллектором, между базой и эмиттером. Возможность использования полупроводникового прибора в этом качестве определяется 2-мя условиями:

  • должна существовать возможность открыть р-n переход;
  • площадь р-n перехода должна быть достаточно большой.

Самодельная транзисторная солнечная батарея

Схема подключения солнечной батареи.

Второе условие обычно выполняется для мощных плоскостных транзисторов. Кремниевый n-р-n транзистор КТ801 (а) интересен тем, что у него легко открыть переход. Достаточно надавить плоскогубцами крышку и аккуратно снять ее. У мощных германиевых транзисторов П210-П217 (б) нужно аккуратно разрезать крышку по линии АА и снять ее.

Подготовленные транзисторы, прежде чем использовать их в качестве элементов солнечной батареи, следует проверить. Для этого можно использовать обычный мультиметр. Переключив прибор в режим измерения тока (предел несколько миллиампер), включить его между базой и коллектором или эмиттером транзистора, переход которого хорошо освещен. Прибор должен показать небольшой ток – обычно доли миллиампера, реже чуть больше 1 мА. Переключив мультиметр в режим измерения напряжения (предел 1-3 В), мы должны получить значение выходного напряжения порядка нескольких десятых долей вольта. Желательно рассортировать их по группам с близкими значениями выходных напряжений.

Для увеличения выходного тока и рабочего напряжения применяется смешанное соединение элементов. Внутри групп элементы с близкими значениями выходных напряжений соединяются параллельно. Общий выходной ток группы равен сумме токов отдельных элементов. Группы между собой включаются последовательно. Их выходные напряжения складываются. Для транзисторов со структурой n-р-n полярность выходного напряжения будет противоположной.

Для сборки источника тока лучше разработать монтажную плату из фольгированного стеклотекстолита. После распайки элементов, плату лучше поместить в корпус подходящих размеров и закрыть сверху пластиной из оргстекла. Источник тока из нескольких десятков транзисторов генерирует напряжение в несколько вольт при выходном токе в несколько миллиампер. Ее можно использовать для подзарядки маломощных аккумуляторов, для питания маломощного радиоприемника и других маломощных электронных устройств.

Самодельная диодная солнечная батарея

Может быть изготовлена своими руками и солнечная батарея на диодах. В качестве примера опишем изготовление батарей на плоскостных кремниевых диодах КД202. . Вместо них можно использовать другие полупроводниковые выпрямители: Д242, Д237, Д226 и т.д.

Чтобы открыть р-n переход диода КД202, нужно проделать следующие операции:

Схема подключения резистора.

  1. Зажав диод в тисках за фланец, отрезать, а затем аккуратно расправить вывод анода, чтобы потом можно было легко освободить припаянный к р-n переходу медный провод.
  2. Приложив к сварному соединению нож или другой острый предмет, легкими ударами, поворачивая в тисках диод, отделить защитный фланец.

Примерно так же можно отделить защитный фланец и других диодов.

В солнечной батарее подготовленные диоды, как и транзисторы в приведенной выше схеме, соединяются смешанно. В каждой группе элементы также соединяются параллельно: с одной стороны между собой соединяются аноды диодов, а с другой – катоды. Отбирать элементы по группам можно так же, как и транзисторы. Чем больше в таком источнике тока отдельных элементов, тем больше его мощность.

Источник тока из 5 групп по 10 диодов генерирует напряжение порядка 2,5 В при силе тока 20-25 мА. Для изготовления самодельного источника тока допустимо использование выпрямительных диодов малой мощности типа Д223. Они удобны тем, что у них легко открыть для света р-n переход. Для этого достаточно подержать их некоторое время в ацетоне, после чего защитная краска легко очищается со стеклянного корпуса.

Не забывайте, что при работе с полупроводниковыми приборами, не следует забывать, что они легко выходят из строя при перегреве. Для пайки следует применять легкоплавкий припой и маломощный паяльник, стараясь не прогревать слишком долго место спайки.

Нетрудно заметить, что изготовление и сборка самодельной полупроводниковой солнечной батареи – задача не очень сложная для человека, знакомого с азами конструирования электронных устройств. Попробуйте – у вас все получится!

Классификация и особенности современных фотоэлементов

Первую солнечную ячейку изготовили на основе селена (Se), однако низкий КПД (менее 1%), быстрое старение и высокая химическая активность селеновых фотоэлементов вынуждали искать другие, более дешёвые и эффективные материалы. И они нашлись в лице кристаллического кремния (Si). Поскольку этот элемент периодической таблицы является диэлектриком, его проводимость обеспечили за счёт включений из различных редкоземельных металлов. В зависимости от технологии изготовления существует несколько типов кремниевых фотоэлементов:

  • монокристаллические;
  • поликристаллические;
  • из аморфного Si.

Первые изготавливаются методом срезания тончайших слоёв от слитков кремния самой высокой степени очистки. Внешне фотоэлементы монокристаллического типа выглядят как однотонные тёмно-синие стеклянные пластины с выраженной электродной сеткой. Их КПД достигает 19%, а срок службы составляет до 50 лет. И хоть производительность изготовленных на основе монокристаллов панелей постепенно падает, есть данные, что изготовленные более 40 лет назад батареи и сегодня сохраняют работоспособность, выдавая до 80% своей первоначальной мощности.

Монокристаллические солнечные ячейки имеют однородный тёмный цвет и срезанные углы — эти признаки не позволяют спутать их с другими фотоэлементами

В производстве поликристаллических фотоэлементов используют не такой чистый, но зато более дешёвый кремний. Упрощение технологии сказывается на внешнем виде пластин — они имеют не однородный оттенок, а более светлый узор, который образуют границы множества кристаллов. КПД таких солнечных ячеек немного ниже, чем у монокристаллических — не более 15%, а срок службы составляет до 25 лет. Надо сказать, что снижение основных эксплуатационных показателей абсолютно не сказалось на популярности поликристаллических фотоэлементов. Они выигрывают за счёт более низкой цены и не такой сильной зависимости от внешней загрязнённости, низкой облачности и ориентации на Солнце.

Поликристаллические фотоэлементы имеют более светлый синий оттенок и неоднородный рисунок — следствие того, что их структура состоит из множества кристаллов

Для солнечных батарей из аморфного Si используется не кристаллическая структура, а тончайший слой кремния, который напыляют на стекло или полимер. Хоть подобный метод производства и является самым дешёвым, такие панели имеют самый короткий срок жизни, причиной чему является выгорание и деградация аморфного слоя на солнце. Не радует этот тип фотоэлементов и производительностью — их КПД составляет не более 9% и во время эксплуатации существенно снижается. Использование солнечных батарей из аморфного кремния оправдано в пустынях — высокая солнечная активность нивелирует падение производительности, а бескрайние просторы позволяют размещать гелиоэлекростанции любой площади.

Возможность напылять кремниевую структуру на любую поверхность позволяет создавать гибкие солнечные панели

Дальнейшее развитие технологии производства фотоэлектрических элементов вызвано необходимостью в снижении цены и улучшении эксплуатационных характеристик. Максимальной производительностью и долговечностью сегодня обладают плёночные фотоэлементы:

  • на основе теллурида кадмия;
  • из тонких полимеров;
  • с использованием индия и селенида меди.

О возможности применения в самодельных устройствах тонкоплёночных фотоэлементов говорить пока ещё рано. Сегодня их выпуском занимается только несколько наиболее «продвинутых» в технологическом плане компаний, поэтому чаще всего гибкие фотоэлементы можно увидеть в составе готовых солнечных панелей.

Принцип работы

Если вы раньше особо не вникали в вопрос, как сделать солнечную батарею, то в первую очередь следует понять принцип ее работы. Если понять принцип, как она работает, то и вопрос, как ее сделать своими руками, не поставит вас в тупик. На самом деле ее конструкция вполне проста.

Как мы писали выше, солнечная батарея (СБ) — это некоторое количество фотоэлектрических преобразователей энергии, сделанных из кремния для генерации постоянного тока. Все элементы соединены и установлены в контейнере.

Преобразователи бывают трёх видов:

  • монокристаллические;
  • поликристаллические;
  • аморфные или тонкопленочные.

Фотоэлектрический эффект представляет собой следующее: свет от Солнца падает на фотоэлементы, после чего выбивает свободные электроны с последних орбит каждого атома кремниевой пластины. Свободные электроны начинают перемещаться между электродами, тем самым вырабатывая постоянный ток. Постоянный ток, в свою очередь, преобразовывается в переменный, которым и будет оснащаться здание.

схема преобразования солнечной энергии в элементах

Определение солнечной батареи

Конструктивно солнечная батарея представляет собой схему преобразователя одного вида энергии в другой. В частности, энергия света преобразуется в электрическую энергию. Причём результатом преобразования становится электрический ток постоянной величины.

Активными элементами конструкции солнечной панели выступают полупроводники, обладающие свойствами фотохимического синтеза. Например, кремний (Si), применением которого были отмечены самые первые исследования в области получения электричества солнца.

Простейший набор из солнечной панели и автомобильного аккумулятора уже составляет конструкцию настоящей домашней энергетической установки

На текущий момент кремний уже не рассматривается безальтернативным химическим элементом, опираясь на который есть смысл сооружать солнечные батареи из панелей, в том числе своими руками.

Более перспективными и эффективными теперь видятся другие представители таблицы Менделеева (в скобках цифры энергетической отдачи):

  1. Арсенид галлия GaAs (кристаллический 25,1).
  2. Фосфит индия InP ( 21,9).
  3. Фосфат индия с галлием + Арсенид галлия + Германий GaInP + GaAs + Ge (32).

Рассматривать солнечную панель глазами обывателя следует как пластину полупроводника (кремния и т.п.), каждая из сторон которой является положительным и отрицательным электродом.

Под влиянием света солнца, в результате химического фотосинтеза, на электродах панели образуются электрические потенциалы. Казалось бы, всё просто. Остаётся только подключить провода к нагрузке и пользоваться электричеством. Но на деле всё несколько иначе.

Элементы

Главные функциональные части СЭС:

  1. СБ — панели со специальным покрытием. Притягивая, задерживая, аккумулируя и концентрируя солнечный свет, тепло, передают его дальше для преобразования в электричество.
  2. Контроллер. Контролирует, показывает состояние АКБ, зарядку/разрядку. Прерывает зарядку, если идет перезарядка, и возобновляет ее.
  3. Инвертор. Преобразует энергию солнца в ток нужного параметра — переменный для бытовой сети (220 или 380 В). Можно ставить несколько таких устройств (как и контроллеров) — система будет стабильнее.
  4. Аккумуляторные батареи, блоки бесперебойного питания — обязательная часть, с ними энергия будет накапливаться и расходоваться соответственно нуждам потребителя, сети.
  5. Предохранители. Монтируются между панелями и их секциями, исключают короткие замыкания.
  6. Коннекторы, распространенный стандарт MC4.

Контроллеры могут быть встроенными внутрь инверторов, БПП. Сама солнечная батарея (поли или монокристалл) состоит из 4 слоев: стеклянное покрытие, выдерживающее удары града и подобные нагрузки, пленочное, прозрачное покрытие (EVA), гелиоэлемент (кремниевый), притягивающий и взаимодействующий с солнечными лучами, пленка для герметизации. Есть также разное размещение p и n слоев, переходов внутри. Тонкопленочные разновидности имеют особую структуру.

Этапы подключения панелей к оборудованию СЭС

Подключение солнечных панелей представляет собой поэтапный процесс, который может быть выполнен в разном порядке. Обычно производят соединение модулей между собой, затем собирают комплект оборудования и аккумуляторы, после чего панели подключают к приборам. Это удобный и безопасный вариант, позволяющий проверить правильность соединения всех элементов перед подачей напряжения. Рассмотрим эти этапы внимательнее:

К аккумулятору

Разберемся, как подключить солнечную батарею к аккумулятору.

Поэтому между фотоэлектрическими элементами и батареями обязательно устанавливают контроллер, обеспечивающий штатный режим зарядки и отдачи энергии. Кроме того, на выходе контроллера обычно устанавливают инвертор, чтобы иметь возможность преобразования накопленной энергии в стандартное напряжение 220 В 50 Гц. Это наиболее удачная и эффективная схема, которая позволяет батареям отдавать или получать заряд в оптимальном режиме и не превышать свои возможности.

Перед тем, как подключить солнечную панель к аккумулятору, необходимо проверить параметры всех компонентов системы и убедиться в их соответствии. В противном случае результатом может стать потеря одного или нескольких приборов.

Иногда используется упрощенная схема подключения модулей без контроллера. Этот вариант применяется в условиях, когда ток от панелей заведомо не сможет создать перезаряд аккумуляторов. Обычно такой способ применяют:

  • в регионах с коротким световым днем
  • низким положением солнца над горизонтом
  • маломощными солнечными панелями, не способными обеспечить избыточный заряд АКБ

При использовании этого метода необходимо обезопасить комплекс, установив защитный диод. Он ставится как можно ближе к аккумуляторам и защищает их от короткого замыкания. Панелям оно не страшно, но для АКБ это весьма опасно. Кроме того, при расплавлении проводов сможет начаться пожар, что создает опасность для всего дома и людей. Поэтому обеспечить надежную защиту — первоочередная задача владельца, решение которой должно быть выполнено до ввода комплекта в эксплуатацию.

К контроллеру

Второй способ часто используется владельцами частных или загородных домов для создания низковольтной осветительной сети. Они приобретают недорогой контроллер и подключают к нему солнечные панели. Устройство компактное, по размерам соотносимо с книгой средних размеров. Оно оснащено тремя парами контактов на лицевой панели. К первой паре контактов подключают солнечные модули, к другой — присоединяют АКБ, а к третей — освещение или другие низковольтные приборы потребления.

Сначала на первую пару клемм подают напряжение 12 или 24 В от аккумуляторов. Это проверочный этап, он нужен для определения работоспособности контроллера. Если прибор верно определил величину заряда батарей, приступают к подключению.

К третьей паре контактов присоединяют низковольтные светильники или иные приборы потребления, питающиеся от 12 (24) В постоянного тока. Больше ни с чем соединять такой комплект нельзя. Если необходимо обеспечить питанием бытовую технику, надо собирать полнофункциональный комплект оборудования — частную СЭС.

К инвертору

Рассмотрим, как подключить солнечную панель к инвертору.

Сам процесс никакой сложности не составляет. В комплекте с инвертором идут два провода, обычно черного и красного цвета («-» и «+»). На одном конце каждого провода есть специальный штекер, на другом — зажим типа «крокодил» для присоединения к клеммам аккумулятора. Провода согласно цветовой индикации присоединяют к инвертору, затем подключают к аккумулятору.

Как собрать солнечную батарею своими руками

Сборка корпуса солнечной батареи

Сборка солнечных батарей, а именно, корпуса может выполняться в разных вариантах. В первом случае ее можно сделать из фанерных листов и деревянных реек, поэтому такой монтаж не представляет особой сложности. Конструкции выпиливаются по размерам, а затем соединяются между собой саморезами. Все стыки и швы предварительно промазываются герметиком. Все деревянные части покрываются краской или специальными защитными составами. Дальнейшие работы проводятся только после полного высыхания конструкции.

Немного сложнее изготовить солнечную батарею из алюминиевого уголка. В этом случае сборка каркаса происходит в следующем порядке:

  • Сборка из уголка прямоугольного каркаса.
  • В каждом углу конструкции сверлятся отверстия под крепления.
  • Внутренняя часть профиля по всему периметру покрывается силиконовым герметиком.
  • Внутрь каркаса на обработанные места укладывается текстолит или оргстекло, вырезанные по размеру. Их нужно как можно плотнее прижать к уголкам.
  • Внутри корпуса лист прозрачного материала фиксируется крепежными уголками, установленными по углам.
  • Дальнейшие работы проводятся после полного высыхания герметика. Предварительно, все внутренние поверхности протираются от пыли и загрязнений.

Пайка проводов и соединение фотоэлементов

Все элементы для солнечных батарей отличаются повышенной хрупкостью и требуют аккуратного обращения. Перед началом пайки они протираются, чтобы поверхность была идеально чистой. Элементы с припаянными проводниками все равно следует проверить и устранить обнаруженные недостатки.

На каждой фотопластинке имеются контакты с различной полярностью. Вначале проводники припаиваются к ним, а уже потом соединяются между собой.

При использовании шин вместо проводов, необходимо учитывать следующие особенности:

  • Шины размечаются и разрезаются на требуемое количество полосок.
  • Контакты пластин протираются спиртом, после чего на них наносится тонкий слой флюса, с одной стороны.
  • Шина прикладывается по всей длине контакта, после чего по ней нужно провести разогретым паяльником.
  • Пластина переворачивается, и такая же операция повторяется на другой стороне.

Паяльник во время монтажа нельзя сильно прижимать к пластине, иначе она может лопнуть. На лицевой стороне после пайки не должно оставаться неровностей. Если они остались, нужно еще раз пройти паяльником по шву.

Чтобы не ошибиться с размещением пластин, перед тем как их собирать, на поверхность листа рекомендуется нанести разметку с учетом всех размеров и зазоров. После этого фотоэлементы укладываются на свои места. Затем контакты панелей соединяются между собой с обязательным соблюдением полярности.

Нанесение герметизирующего слоя

Перед тем как самому герметизировать конструкцию, нужно выполнить тестирование и проверить солнечные батареи на работоспособность. Она выносится на солнце, после чего на выводах шин замеряется напряжение. Если оно в пределах нормы, можно приступать к нанесению герметика.

Один из наиболее подходящих вариантов предполагает следующие действия:

  • Силиконовый герметик наносится на самодельные солнечные батареи капельками по краям корпуса и между пластинами. После этого края фотоэлементов аккуратно прижимаются к прозрачному основанию и должны прилегать к нему как можно плотнее.
  • На каждый край пластинок укладывается небольшой груз, после чего герметик полностью высыхает, а фотоэлементы надежно фиксируются.
  • В самом конце аккуратно промазываются края рамки и все стыки между пластинами. На данном этапе герметиком покрывается все, кроме самих пластинок, он не должен попасть на их оборотную сторону.

Окончательная сборка солнечной панели

После всех операций остается лишь полностью собрать солнечную батарею в домашних условиях.

В этом случае порядок действий будет следующий:

  • В боковой части корпуса устанавливается соединительный разъем, к которому подключаются диоды Шоттки.
  • С лицевой стороны вся сборка пластинок солнечной батареи закрывается прозрачным защитным экраном и герметизируется, чтобы исключить попадание влаги внутрь конструкции.
  • Для обработки лицевой стороны рекомендуется использовать специальный лак, например, PLASTIK-71.
  • После сборки выполняется окончательная проверка, после чего солнечная батарея из подручных средств сделанная своими руками может устанавливаться на свое место.

Как сделать солнечную батарею своими руками

Повер банк с солнечной батареей

Обзор солнечных батарей для туристов

Установка солнечных батарей

Солнечные батареи: альтернативная энергия

Производство солнечных батарей

Дополнительные устройства для эксплуатации

Важной особенностью солнечной батареи является сильная зависимость ее выходного напряжения и максимального тока от освещенности. Сделав своими руками батарею с расчетным напряжением в 12В, можно будет обнаружить, что ее реальное напряжение будет колебаться от 9В при слабом и косо падающем свете до 18-19В при ярком прямом освещении

Напрямую подключать солнечную батарею к аккумулятору нельзя – это может привести к перезаряду и выкипанию электролита, если используется свинцово-кислотный аккумулятор. Для герметичных гелевых аккумуляторов перезаряд еще более страшен и приводит к необратимому повреждению.

Во избежание перезаряда аккумуляторных батарей используются специальные контроллеры заряда. Наиболее простые схемы просто отключают аккумулятор по мере набора заряда, а сама зарядка идет лишь тогда, когда напряжение на солнечной батарее выше, чем на аккумуляторе (так называемая схема On-Off). По соображениям безопасности отключение зарядки происходит заведомо раньше полного набора емкости, в среднем на 70 процентах. Более совершенные зарядные устройства на основе ШИМ (широтно-импульсной модуляции, также PWM от Pulse Width Modulation) поддерживают заряд аккумулятора практически на 100%, переходя по мере набора емкости в импульсный режим. Самые сложные и дорогие контроллеры MPPT (Maximum Power Point Tracking, отслеживание точки максимальной мощности) также отслеживают и состояние самой батареи, включая ее температуру, для обеспечения максимального КПД.

Китайские контроллеры заряда производства фирм наподобие EP Solar обойдутся недорого по сравнению с самой солнечной батареей: блок 12В/5А стоит около 1100 р., более мощные и совершенные американские блоки Morningstar имеют цену от 8 тысяч рублей.

Но подобное устройство можно собрать и самостоятельно при наличии соответствующих навыков в радиоэлектронике. Ниже приведена простая схема повышающего контроллера, способного обеспечивать заряд аккумулятора от шестивольтовой солнечной батареи:

Для подстройки максимального напряжения на выходе служит подстроечный резистор R2.

Для солнечных батарей, рассчитанных на 12В, можно использовать следующую схему:

Здесь MainLoad– разъем для подключения аккумулятора, AuxLoad– для дополнительной нагрузки, требующей ограничения напряжения (например, зарядное устройство телефона). Достоинство этой схемы – возможность ее использования с различными типами аккумуляторов, определяемыми положением переключателя:

  • 1.Обслуживаемый свинцово-кислотный аккумулятор
  • 2.Необслуживаемый аккумулятор
  • 3.Батарея литиевых аккумуляторов (3 аккумулятора по 4,1 В)

Способ изготовления солнечных батарей

Сначала определимся что нужно:

  • Фотоэлементы.
  • Основание для крепления самого ценного.
  • Площадка где будет стоять будущая электростанция.

Теперь разберемся детальнее с каждым пунктом.

Сборка солнечных модулей из кремниевых фотоэлементов

Фотоэлементы с одного бока покрыты тонким слоем фосфора. Иногда там может быть бор.

Данный слой концентрирует в одном месте большое количество электронов. Они не разбегаются так как удерживаются фосфорной пленкой.

На пластине прикреплены металлические дорожки, по которым в дальнейшем протекает электрический ток. Данные кремневые элементы достаточно хрупкие поэтому будьте аккуратными при работе с ними.

Уровень напряжения зависит от количества таких полноценных пластинок.

Основные составляющие части:

  1. Кремневые пластины.
  2. Рейки.
  3. ДСП, несколько листов.
  4. Уголки из алюминия.
  5. Поролон толщиной 1,5-2,5 см.
  6. Что-то прозрачное для основания кремниевых пластин. Обычно это оргстекло.
  7. Шурупы или саморезы.
  8. Герметик.
  9. Провода.
  10. Клейма.
  11. Диоды.

Так же потребуются такие инструменты как:

  • Ножовка.
  • Шуруповерт.
  • Паяльник.
  • Мультиметр.

Для самостоятельной сборки солнечного модуля используют моно или поликристаллические фотоэлементы с параметрами 3 на 6 дюйма. Их можно отыскать в любом китайском магазине. Чтобы с экономить можно приобрести «специальные группы-пачки». Правда в них часто встречается брак.

Масса торговых точек продает фото пластины пачками по 36 или 72 штуки.

Чтобы соединить разделенные пластины-модули нужны специальные шины. А что бы сборку включить потребуются клеймы.

Теперь, когда с кремневыми фотоэлементами стал все ясно, идем собирать основание.

Остов для солнечной батареи

Это самое простое что можно изготовить в домашних условиях! Обычно его выполняют из реечек или алюминиевого профиля. Его без проблем можно приобрести в хозяйственном магазине. Целесообразно работать с алюминием по следующим причинам:

  • Он легкий и не очень давит на опорную установку.
  • Не ржавеет.
  • Не поглощает влагу.
  • Не подвержен гниению в отличие от древесины.

Прозрачный элемент

При покупке обратите внимание на:

  • Процент преломления солнечного света. Чем он ниже, тем лучше! КПД пластин будет больше.
  • На сколько он поглощает инфракрасные лучи.

На его роль подойдут:

  • Плексиглас.
  • Поликарбонат. Чуть хуже.
  • Оргстекло.

От уровня поглощения зависит будет ли повышаться температура на кремниевых пластинах. Лучше всего пользоваться антибликовым прозрачным стеклом.

Определяемся с местом

Размер солнечного модуля зависит от количества, фотоэлементов, которые будут в него установлены. Лучше всего ставить батареи в место куда свет солнца падает со всех сторон. Так же можно оснастить подобную электростанцию автоматическим поворотом. То есть она будет всегда повернута к солнцу за счет этой штуки. Поворотное устройство для солнечной батареи можно изготовить своими руками.

Проследите за тем чтобы тени домов и деревьев не падали на нашу самодельную солнечную батарею.

Угол наклона зависит от:

  • Климата.
  • Того где находится дом.
  • Времени года.

Солнечные элементы питания выдают максимальный КПД в тот момент, когда лучи падают перпендикулярно.

По некоторым расчетам было выяснено что 1кв метр выдает 120 Вт. В результате этого можно предположить, что на обычный дом в месяц будет уходить 300 кВт. Поэтому нужно задействовать площадь в 20 квадратных метров.

В результате всего выше сказанного солнечная батарея, выполненная своими руками, поможет сэкономить часть средств на электричество.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector