Калькуляторы расчета размеров развертки конуса

Содержание:

Объем наклонной призмы

Теперь, используя методы интегрирования, мы можем составить формулы для вычисления объема некоторых фигур. Начнем с треугольной наклонной призмы.

Пусть есть треугольная призма АВСА2В2С2. Проведем ось Ох так, чтобы точка О располагалась в плоскости АВС. Пусть Ох пересечет плоскость А2В2С2 в некоторой точке О2. Тогда отрезок ОО2 будет высотой призмы, ведь он окажется перпендикулярным к обоим основаниям.

Обозначим длину высоты ОО2 буквой h. Далее докажем, что всякое сечение А1В1С1 призмы, перпендикулярное оси Ох, будет равно ∆АВС. Действительно, если АВС⊥ОО2 и А1В1С1⊥ОО2, то АВС||А1В1С1. Прямые АВ и А1В1 принадлежат одной грани АВВ2А1, но не пересекаются, ведь они находятся в параллельных плоскостях. Аналогично АС||А1С1 и ВС||В1С1. Теперь посмотрим на четырехугольник АВВ1А1. АВ||A1В1 и АА1||ВВ1. Тогда АВВ1А1 по определению является параллелограммом. Это означает, что отрезки АВ и А1В1 одинаковы. Аналогично доказывается, что одинаковы отрезки АС и А1С1, а также ВС и В1С1. Но тогда одинаковы и ∆АВС и ∆А1В1С1.

Итак, площади всех сечений одинаковы и равны площади основания призмы. Обозначим ее как S. Так как S не зависит от координаты, то интегрирование будет выглядеть так:

Итак, объем треугольной наклонной призмы – это произведение площади ее основания на высоту. Теперь рассмотрим произвольную призму, в чьем основании находится n-угольник. Такой n-угольник можно разбить на треугольные призмы с общей высотой h и площадями оснований S1, S2, S3, …

Тогда площадь S основания всей призмы будет суммой этих чисел:

Задание. Основание призмы – это треугольник со сторонами 10, 10 и 12. Боковое ребро имеет длину 8 и образует с основанием угол в 60°. Вычислите объем призмы.

Решение. Пусть в основании призмы АВСА1В1С1 лежит ∆АВС со сторонами АВ = 12 и АС = ВС = 10. Его площадь можно найти разными способами, но быстрее всего применить формулу Герона. Сначала найдем полупериметр ∆АВС:

Далее надо найти высоту призмы. Опустим из точки В1 перпендикуляр В1О на плоскость АВС. Тогда в прямоугольном ∆ОВВ1 ∠В = 60° (по условию задачи и по определению угла между плоскостью и прямой). Зная длину бокового ребра ВВ1, найдем высоту ОВ1:

Почему пожарные ведра имеют форму конуса?

Кто задумывался, почему пожарные ведра имеют, казалось бы, странную коническую форму? А это не просто так. Оказывается, коническое ведро при тушении пожара имеет много преимуществ перед обычным, имеющим форму усеченного конуса.

Во-первых, как оказывается, пожарное ведро быстрее наполняется водой и при переноске она не расплескивается. Конус, объем которого больше обычного ведра, за один раз позволяет перенести больше воды.

Во-вторых, воду из него можно выплеснуть на большее расстояние, чем из обычного ведра.

В-третьих, если коническое ведро сорвется с рук и упадет в огонь, то вся вода выливается на очаг возгорания.

Все перечисленные факторы позволяют сэкономить время — главный фактор при тушении пожара.

Калькуляторы расчета размеров развертки конуса

Несколько слов о рассчитываемых параметрах

Понять принцип расчета будет несложно, разобравшись со следующей схемой:

Усеченный конус с определяющими размерами и его развёртка. Показан усеченный конус, но с полным — принцип не меняется, а расчеты и построение становятся даже проще.

Итак, сам конус определяется радиусами оснований (нижней и верхней окружности) R1 и R2, и высотой Н. Понятно, что если конус не усеченный, то R2 просто равно нулю.

Буквой L обозначена длина боковой стороны (образующей) конуса. Она в некоторых случаях уже известна – например, требуется сделать конус по образцу или выкроить материал для обтяжки уже имеющегося каркаса. Но если она неизвестна – не беда, ее несложно рассчитать.

Справа показана развёртка. Она для усеченного конуса ограничена сектором кольца, образованного двумя дугами, внешней и внутренней, с радиусами Rb и Rs. Для полного конуса Rs также будет равен нулю. Хорошо видно, что Rb = Rs + L

Угловую длину сектора определяет центральный угол f, который в любом случае предстоит рассчитать.

Все расчеты займут буквально минуту, если воспользоваться предлагаемыми калькуляторами:

Развертки конических поверхностей в программе AutoCAD

УДК 515.2:681.3

Н.Ю. Смекаева, Е.В. Шамрай-Лемешко, Дальрыбвтуз, Владивосток

РАЗВЕРТКИ КОНИЧЕСКИХ ПОВЕРХНОСТЕЙ В ПРОГРАММЕ Д^оСДй

Описано построение разверток некоторых конических поверхностей. Такие поверхности встречаются при изготовлении вентиляционных систем, бункеров, водосточных труб. Чертежи разверток выполнены в современном исполнении — программе АиіоСАй.

быть определен по формуле

Боковой разверткой конуса вращения (рис. 1) является сектор

окружности, радиус которой равен образующей конуса, а угол может

2п-г _ г а =——= 360 • — .

( е

£ — длина образующей конуса, г — радиус окружности основания конуса

На практике целесообразно иметь значение угла не в радианах, а в градусах, поэтому в формуле вместо значения 2ж часто указывают 360 °.

Рис. 1

Развертка боковой поверхности конуса вращения с отверстием На рис. 2 изображено пересечение конуса с цилиндром. Обе поверхности являются поверхностями вращения. Оси их пересекаются под прямым углом. Поэтому линия пересечения на фронтальной проекции совпадает с проекцией основания цилиндра. Фронтальная

проекция имеет ось симметрии, поэтому выполняют половину боковой поверхности. Полную развертку получают командой ЗЕРКАЛО.

Построение чертежа выполняют в следующей последовательности:

1. Построена половина поверхности развертки как сектор с углом

а/2 = (360° Я) : ^команда РАЗМЕРЫ УГЛОВЫЕ

Длина образующей ^ определена командой РАЗМЕРЫ.

2. На фронтальной проекции проведены образующие А, В, С и й.

Образующая В — проведена касательной к проекции линии

пересечения, образующая С — делит дугу ВДО пополам.

3. Точки линии пересечения обозначены 1, 2, 3, 4 и 5.

4. На развертке отложим хорды, заменяющие дуги ВС и Сй (команды КОПИРУЙ, ПЕРЕНЕСИ) и проведем образующие командой отрезок.

5. Расстояние от вершины конуса до точек линии пересечения определены методом вращения образующих вокруг оси конуса и перенесены на образующие развертки.

6. Полученные точки соединены плавной кривой командой СПЛАЙН.

7. Полный контур развертки боковой поверхности с отверстием получен командой ЗЕРкАлО.

Рис. 2

Построение разверток усеченного конуса

Конические переходы с одного диаметра на другой (воронки) встречаются в устройстве водосточных труб и во многих других изделиях из тонколистовой стали (бидонах, лейках и пр.). Если при этом угол конуса не имеет особого значения, то его величину можно выбирать 29°, 60° или 97°. В этом случае развертки имеют очень простую форму — 1/4°, 1/2° и 3/4° круга. Примеры представлены на рис. 3.

Рис. 3

Построение приближенной развертки боковой поверхности усеченного конуса

В некоторых случаях разметчику бывает невозможно отложить угол сектора на заготовке. В таком случае развертку выполняют приближенно. Для этого в конус вписывают правильную пирамиду и строят ее точную развертку. Окружность основания аппроксимируют (заменяют) вписанной ломаной линией. На горизонтальную плоскость Пі она проецируется в натуральную величину, так как лежит в горизонтальной плоскости уровня. Соединив точки 1, 2, 3 и 4 ломаной линии с вершиной конуса, получим пирамиду, аппроксимирующую поверхность конуса.

Построение такой развертки показано на рис. 4. Так как конус имеет фронтальную плоскость симметрии, выполняют половину развертки. Полную развертку получаем командой ЗЕРКАЛО.

1

Рис. 4

Все ребра пирамиды имеют равную длину — Б1.

Дальнейшее построение сводится к построению треугольников Б12, Б23 и Б34 по трем сторонам. Отрезки БД бВ, БС и БО показывают, на сколько каждое ребро срезано фронтальной плоскостью. Их величины определены способом вращения вокруг проецирующей оси /.

Точки А, В, С и О, а также точки 1, 2, 3 и 4 соединены плавной кривой (команда СПЛАЙН).

Построенная половина развертки пирамидальной поверхности является половиной точной развертки конической поверхности.

Полная приближенная боковая развертка усеченного конуса построена командой ЗЕРКАЛО.

Библиографический список

1. Иванов Г.С. Начертательная геометрия. М.: Машиностроение, 1995. 208 с.

2. Смекаева Н.Ю. Развертки поверхностей. Владивосток: Дальрыбвтуз, 2001. 28 с.

3. Смекаева Н.Ю. Развертки поверхностей в программе AutoCAD. Владивосток: Дальрыбвтуз, 2007. 30 с.

Видео инструкция

Просто, интересно и весело мастерить поделки из конусов. Все потому, что самый обычный конус может превратиться в любую игрушку, зверушку, птицу, забавный предмет. Прикрепляя к конусу разные детали, а также скрепляя конусы между собой, можно создать целую коллекцию поделок, как игрушек, сувениров и вполне себе полезных предметов.

Чтобы создать конус следует начертить с помощью циркуля круг и разделить его на 4 части. Затем эти все сектора разрезаются, и из получившихся четвертинок сворачивается конус. Такой конус будет узким, а вот если отрезать больше четвертинки круга, получится пошире и сам конус.

Конусы

      Рассмотрим произвольную плоскость α, точку   S,   не лежащую на плоскости α,   и   SO,   опущенный из точки   S   на плоскость   α   (точка   O   – ). Рассмотрим также произвольный круг с центром в точке   O,   лежащий на плоскости   α.

      Определение 1. Конусом называют фигуру, состоящую из всех отрезков, соединяющих точку   S   с точками указанного круга с центром в точке   O,   лежащего на плоскости   α   (рис. 1).

Рис.1

      Определение 2.

Точку   S   называют вершиной конуса.

Отрезок   SO   называют осью конуса.

  α   (длину отрезка   SO)   называют высотой конуса.

Круг с центром в точке   O,   лежащий на плоскости   α,   называют основанием конуса, радиус этого круга называют радиусом основания конуса, а саму плоскость   α   называют плоскостью основания конуса.

Отрезки, соединяющие точку   S   с точками называют образующими конуса.

Совокупность всех образующих конуса составляет боковую поверхность конуса (коническую поверхность).

Полная поверхность конуса состоит из основания конуса и его боковой поверхности.

      Замечание 1. Отрезок   SO   часто называют высотой конуса.

      Замечание 2. Все имеют одинаковую длину. У конуса с   h   и   r   длина образующих равна

От ровного листа до круглой обечайки:

Вальцы с асимметричным расположением валков (рис.11) производят практически полную гибку обечайки.

Наиболее современными являются четырехвалковые машины (рис.12), на которых за один цикл осуществляется вальцовка и подгибка краев. Радиус гибки обечаек проверяют шаблонами. Возможные дефекты вальцовки цилиндрических обечаек приведены на рис.14.

Конусы и переходные элементы в каждой прочности и качестве материала

В дополнении к шишкам и переходным частям, мы также производим раковины и доборные любого рода. Компоненты, которые не могут транспортироваться в одной части из-за их размер, мы производим, насколько это технически возможно в ряде сегментов, которые могут быть собраны на месте для получения готового продукта.

Высокая точность и надежность в технологии формирования — как раз вовремя

В производстве мы уделяем большое внимание выдающемуся качеству и точности. Существует много причин, по которым вам может понадобиться сделать конус с металлической фольгой. Металлические конусы служат для запирания дымовых труб, вплоть до определенных видов огня на открытом воздухе и во время барбекю, а иногда и в декоративных целях

Складывание листа металла проще, чем вы могли ожидать, поэтому не пугайтесь процесса

Металлические конусы служат для запирания дымовых труб, вплоть до определенных видов огня на открытом воздухе и во время барбекю, а иногда и в декоративных целях. Складывание листа металла проще, чем вы могли ожидать, поэтому не пугайтесь процесса

Введите его полностью, но с осторожностью, конечно

Также способы получения нужной формы бывают разные.

Гибка конических обечаек производится несколькими способами:

1) Установкой под углом среднего валка у симметричных трехвалковых машин и бокового валка у асимметричных трехвалковых и четырехвалковых вальцев (рис.15). 2) Гибкой по средней линии последовательно по различным участкам (рис.16) на вальцах. Сначала осуществляют подгибку кромок, затем гнут середину заготовки на каждом участке с переустановками. Такой способ приводит к повышенному износу оборудования.

3) Гибка обечаек на вальцах со сменными коническими валками. Этот способ оправдан в серийном и массовом производстве. 4) Безвальцевым способом для листа толщиной до 20 мм. На рис. 17 показан метод свертывания. Кромки 3 и 4 заготовки закрепляют в опорах 2 и 5, сводят друг к другу, одновременно поворачивают опоры в разных направлениях. Далее кромки конической обечайки соединяют на прихватках и снимают со станка. 5) Наиболее производительным способом является изготовление конических обечаек в штампах (рис.18). Перед сваркой частей обечаек производят их предварительную фиксацию для исключения деформации элементов и обеспечения сварочных зазоров. Совмещение кромок обычно производится струбцинами и сборочными кольцами для тонкого листа (рис.19). На одну обечайку устанавливается две струбцины по торцам.

Цилиндричность обечаек обеспечивается специальными приспособлениями с домкратами, распирающими деталь. При сборке габаритных деталей используются стяжные планки и клиновые соединения (рис.20).

Изготовление рабочего конуса на заказ

Карандаш будет рисовать круг, и небольшая выемка, которая оставила компас там, где она была поддержана, должна быть отмечена. 2 Отрежьте круг специальными ножницами из металлической фольги. Носите перчатки так, чтобы края металла были очень острыми. 3 Отрежьте круг пополам. Используя точку поддержки вашего компаса в качестве ориентира и в качестве конечной точки, разрежьте там прямую линию, начинающуюся с обоих концов. Теперь у вас будет круг металлической фольги с щелью, которая начнется с одной стороны и достигнет центра. 4 Перекройте одну сторону разреза над другой. Начиная с щели, надавите куски листа один поверх другого. При этом вы увидите, что круг начинает сжиматься и формировать конус. Остановитесь, когда это необходимо, в зависимости от того, насколько глубоко вы этого хотите. 5 Лента на каждой стороне оверлея. Это предотвратит перемещение металла и избавит вас от грубых краев. Теперь ваш конус металлического лезвия завершен. Носите перчатки всякий раз, когда вы манипулируете металлическим лезвием, чтобы не обрезать руки. Металлическое лезвие Ножницы для металлического лезвия Компас с карандашом Клейкая лента Перчатки. Установление определенных единообразных правил находит свое разумное значение в необходимости гарантировать в отношении всех профессий, подверженных сертификации, цели, требующиеся сертификатов профессионализма.

Конусы

      Рассмотрим произвольную плоскость α, точку   S,   не лежащую на плоскости α,   и   SO,   опущенный из точки   S   на плоскость   α   (точка   O   – ). Рассмотрим также произвольный круг с центром в точке   O,   лежащий на плоскости   α.

      Определение 1. Конусом называют фигуру, состоящую из всех отрезков, соединяющих точку   S   с точками указанного круга с центром в точке   O,   лежащего на плоскости   α   (рис. 1).

Рис.1

      Определение 2.

Точку   S   называют вершиной конуса.

Отрезок   SO   называют осью конуса.

  α   (длину отрезка   SO)   называют высотой конуса.

Круг с центром в точке   O,   лежащий на плоскости   α,   называют основанием конуса, радиус этого круга называют радиусом основания конуса, а саму плоскость   α   называют плоскостью основания конуса.

Отрезки, соединяющие точку   S   с точками называют образующими конуса.

Совокупность всех образующих конуса составляет боковую поверхность конуса (коническую поверхность).

Полная поверхность конуса состоит из основания конуса и его боковой поверхности.

      Замечание 1. Отрезок   SO   часто называют высотой конуса.

      Замечание 2. Все имеют одинаковую длину. У конуса с   h   и   r   длина образующих равна

Формула объема усеченного конуса через площади оснований и их расстояние до вершины

Пусть у нас есть усеченный конус. Мысленно добавим к нему недостающий кусок, тем самым делая из него “обычный конус” с вершиной. Тогда объем усеченного конуса можно найти как разность объемов двух конусов с соответствующими основаниями и их расстоянием (высотой) до вершины конуса.

Объем усеченного конуса

V = 1 3 ⋅ S ⋅ H − 1 3 ⋅ s ⋅ h = 1 3 ⋅ (S ⋅ H − s ⋅ h) V=\frac{1}{3}\cdot S\cdot H-\frac{1}{3}\cdot s\cdot h=\frac{1}{3}\cdot (S\cdot H-s\cdot h)
V
=

3

1

S

H

3

1

s

h
=

3

1

(S

H

s

h
)

S S
S

— площадь основания большого конуса; H H
H

— высота этого (большого) конуса; s s
s

— площадь основания малого конуса; h h
h

— высота этого (малого) конуса;

Определите объем усеченного конуса, если высота полного конуса H H
H

равна 10 см 10\text{ см}
1
см
, радиус нижнего основания R R
R
— 5 см 5\text{ см}
5
см
, верхнего r r
r
— 4 см 4\text{ см}
4
см
, а высота усеченного конуса – 8 см 8\text{ см}
8
см
.

Решение

R = 5 R=5
R
=
5
r = 4 r=4
r
=
4
H = 10 H=10
H
=
1
H − h = 8 H-h=8
H

h
=
8
,
где h h
h
— высота малого конуса.

Найдем площади обоих оснований конуса:

S = π ⋅ R 2 = π ⋅ 5 2 ≈ 78.5 S=\pi\cdot R^2=\pi\cdot 5^2\approx78.5
S
=
π

R
2
=
π

5
2

7
8
.
5

s = π ⋅ r 2 = π ⋅ 4 2 ≈ 50.24 s=\pi\cdot r^2=\pi\cdot 4^2\approx50.24
s
=
π

r
2
=
π

4
2

5
.
2
4

Найдем высоту малого конуса h h
h
:

H − h = 8 H-h=8
H

h
=
8

h = H − 8 h=H-8
h
=
H

8

h = 10 − 8 h=10-8
h
=
1

8

h = 2 h=2
h
=
2

Объем равен по формуле:

V = 1 3 ⋅ (S ⋅ H − s ⋅ h) ≈ 1 3 ⋅ (78.5 ⋅ 10 − 50.24 ⋅ 2) ≈ 228 см 3 V=\frac{1}{3}\cdot (S\cdot H-s\cdot h)\approx\frac{1}{3}\cdot (78.5\cdot 10-50.24\cdot 2)\approx228\text{ см}^3
V
=
3
1


(S

H

s

h
)

3
1


(7
8
.
5

1

5
.
2
4

2
)

2
2
8
см
3

Ответ

228 см 3 . 228\text{ см}^3.
2
2
8
см
3
.

В геометрии усеченным конусом называется тело, которое образовано вращением прямоугольной трапеции около той ее боковой стороны, которая перпендикулярна основанию. Как рассчитывают объем усеченного конуса
, всем известно еще из школьного курса геометрии, а на практике эти знания нередко применяют конструкторы различных машин и механизмов, разработчики некоторых товаров народного потребления, а также архитекторы.

Расчет объема усеченного конуса

Услуги вальцовки недорого

Компания предоставляет услуги вальцовки по ценам

, наиболее приемлемым в Москве. На заказ мы качественно выполним любые объемы работ, в том числе в промышленных масштабах. Изготовим изделия в точности, соответствующие чертежам заказчика. Работы выполняются в оговоренные сроки, без нарушения графиков. Для вальцовки у нас имеется технологически современное оборудование и опытные специалисты, которые относятся к своей работе с максимальной степенью ответственности. Производим вальцевание тонколистового и пруткового металла. Осуществляем вальцовку кромок листа и углов с точным радиусом закругления.

Развертка усеченного конуса

Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.

Геометрия как наука сформировалась в Древнем Египте и достигла высокого уровня развития

Известный философ Платон основал Академию, где пристальное внимание уделялось систематизации имеющихся знаний. Конус как одна из геометрических фигур впервые упоминается в известном трактате Евклида «Начала»

Евклид был знаком с трудами Платона. Сейчас мало кто знает, что слово «конус» в переводе с греческого языка обозначает «сосновая шишка». Греческий математик Евклид, живший в Александрии, по праву считается основоположником геометрической алгебры. Древние греки не только стали преемниками знаний египтян, но и значительно расширили теорию.

Как начертить уклоны и конусность

Уклон характеризует отклонение прямой линии от горизонтального или вертикального направлений. Для того чтобы построить уклон 1:1, на сторонах прямого угла откладывают произвольные, но равные величины (рис. 1). Очевидно, что уклон 1:1 соответствует углу в 45 градусов. Чтобы построить линию с уклоном 1:2, по горизонтали откладывают две единицы, для уклона 1:3 — три единицы и т. д. Как видно из чертежа, уклон есть отношение катета противолежащего к катету прилежащему, т. е. он выражается тангенсом угла а. Величину уклона на чертеже в соответствии с ГОСТ 2.307—68 указывают с помощью линии-выноски, на полке которой наносят знак уклона и его величину. Расположение знака уклона должно соответствовать определяемой линии: одна из прямых знака должна быть горизонтальна, другая — наклонена примерно под углом 30° в ту же сторону, как и сама линия уклона.

На рисунке в качестве примера построен профиль несимметричного двутавра, правая полка которого имеет уклон 1:16. Для ее построения находят точку А с помощью заданных размеров 26 и 10.

В стороне строят линию с уклоном 1:16, для чего по вертикали откладывают, например, 5 мм, а по горизонтали 80 мм; проводят гипотенузу, направление которой определяет искомый уклон.

С помощью рейсшины и угольника через точку А проводят линию уклона, параллельную гипотенузе.

Конусностью называют отношение диаметра основания конуса к его высоте. В этом случае конусность К=d/l. Для усеченного конуса К = (d-d1)/l.

Пусть требуется построить конический конец вала по заданным размерам: d — диаметр вала — 25 мм; I — общая длина конца вала — 60 мм; l1 — длина конической части — 42 мм; d1 — наружный диаметр резьбы — 16 мм; К — конусность 1 : 10 (рис. 3, б). Прежде всего, пользуясь осевой, строят цилиндрическую часть вала, имеющую диаметр 25 мм.

Этот размер определяет также большее основание конической части. После этого строят конусность 1:10. Для этого строят конус с основанием, равным 10 мм, и высотой, равной 100 мм (можно было бы воспользоваться и размером 25 мм, но в этом случае высота конуса должна быть взята равной 250 мм, что не совсем удобно).

Параллельно линиям найденной конусности проводят образующие конической части вала и ограничивают ее длину размером 42 мм. Как видно, размер меньшего основания конуса получается в результате построения. Этот размер обычно не наносят на чертеж. Запись М16X1,5 является условным обозначением метрической резьбы, о чем подробнее будет сказано дальше.

  • nn
  • TBegin—>TEnd—>
  • nn

Рис. 1. Построение уклонов

n

n

Перед размерным числом, характеризующим конусность, наносят условный знак в виде равнобедренного треугольника, вершину которого направляют в сторону вершины самого конуса. Знак конусности располагают параллельно оси конуса над осью или на полке линии-выноски, заканчивающейся стрелкой, как в случае надписи уклона. Конусность выбирают в соответствии с ГОСТ 8593—57 .

nn

nn

Рис. 2. Пример построения уклонов

  1. n
  2. n
  3. TBegin—>TEnd—>
  4. nn

Рис. 3. Построение конусности

n

Площадь сферы

В предыдущих уроках мы уже узнали формулу для вычисления площади сферы, однако тогда мы ее не доказывали. Однако теперь мы можем ее доказать, используя формулу объема шара. Но сначала напомним саму формулу:

Впишем сферу в многогранник с n гранями. Ясно, что расстояние от граней этого многогранника до центра сферы равно радиусы сферы R. Далее построим пирамиды, чьи вершины находятся в центре сферы, а основания – это грани многогранника. Заметим, что такие пирамиды будут иметь одинаковые высоты длиной R.

Обозначим площади граней многогранника как S1, S2, S3,…Sn. Тогда объемы пирамид, построенных на этих гранях, вычисляются так:

Заметим, что в сумме эти объемы дают объем всего многогранника, а сумма площадей S1, S2, S3,…Sn – это площадь всей его поверхности. Тогда можно записать:

Теперь начнем неограниченно уменьшать размеры граней многогранника. Тогда число n будет расти, объем многогранника будет приближаться к объему шара, а площадь многогранника – к площади к сфере. Тогда и доказанное равенство можно будет записать так:

Задание. Необходимо изготовить закрытый сосуд с заранее заданным объемом V. Предлагается два варианта формы этого сосуда – шар и куб. Так как поверхность сосуда покрывается очень дорогой краской, то необходимо выбрать вариант с меньшей площадью поверхности. Какую форму для сосуда следует выбрать?

Решение. Обозначим радиус шара как R, а ребро куба как а. Тогда можно записать:

Теперь надо выяснить, какое из полученных значений больше. Для этого поделим площадь куба на площадь сферы. Если получится число, большее единицы, то площадь куба больше:

Получившееся число больше единицы, ведь 6 больше числа π, равного 3,1415926… Значит, и площадь куба больше, а потому необходимо выбрать сосуд, имеющий форму шара.

Ответ: шар.

Примечание. Более сложными математическими методами можно доказать, что если второй сосуд имеет не форму куба, а вообще любую форму, отличную от шара, то всё равно следует выбирать именно сосуд в форме шара. То есть из всех поверхностей, ограничивающих определенный объем, именно сфера имеет наименьшую площадь. Этот факт имеет и физическое следствие – капли дождя и мыльные пузыри стремятся принять форму шара, также как и любые жидкости, находящиеся в невесомости.

Итак, мы научились вычислять объемы таких тел, как конус, пирамида, шар, призма. Также помощью интегрирования можно находить объемы и ещё более сложных тел, если мы можем составить функцию, описывающую площадь их сечения.

Конус и его сечение плоскостью

Перу древнегреческого математика Аполлония Пергского принадлежит теоретический труд «Конические сечения». Благодаря его работам в геометрии появились определения кривых: параболы, эллипса, гиперболы. Рассмотрим, причем здесь конус.

Возьмем прямой круговой конус. Если плоскость пересекает его перпендикулярно оси, то в разрезе образуется круг. Когда секущая пересекает конус под углом к оси, то в разрезе получается эллипс.

Секущая плоскость, перпендикулярная основанию и параллельная оси конуса, образует на поверхности гиперболу. Плоскость, разрезающая конус под углом к основанию и параллельная касательной к конусу, создает на поверхности кривую, которую назвали параболой.

Основные определения

Прямой круговой конус образован вращением прямоугольного треугольника вокруг одного катета. Как видно, понятие конуса не изменилось со времен Евклида.

Гипотенуза AS прямоугольного треугольника AOS при вращении вокруг катета OS образует боковую поверхность конуса, поэтому называется образующей. Катет OS треугольника превращается одновременно в высоту конуса и его ось. Точка S становится вершиной конуса. Катет AO, описав круг (основание), превратился в радиус конуса.

Если сверху провести плоскость через вершину и ось конуса, то можно увидеть, что полученное осевое сечение представляет собой равнобедренный треугольник, в котором ось является высотой треугольника.

Также часто требуется рассчитать площадь боковой поверхности тела вращения. Площадь боковой поверхности конуса равна произведению половины длины окружности основания и образующей конуса.

S=C*L/2=n*R*L/2

где C — длина окружности основания, l — длина образующей конуса, R — радиус основания.

Объем, площади боковой и полной поверхностей конуса и усеченного конуса

      Введем следующие обозначения

V объем (объем )
Sбок площадь (площадь )
Sполн площадь (площадь )
Sосн площадь
Sверх.осн площадь верхнего
Sнижн.осн площадь нижнего

V

объем (объем )

Sбок

площадь (площадь )

Sполн

площадь (площадь )

Sосн

площадь

Sверх.осн

площадь верхнего

Sнижн.осн

площадь нижнего

      Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности конуса, а также формулы для вычисления объема, площади боковой и полной поверхности усеченного конуса.

Фигура Рисунок Формулы для объема, площади боковой и полной поверхности

Sосн = πr2,

Sбок= πrl,

Sполн = πr2 + πrl,

гдеr – ,l  – длина h –

Sбок= π (r + r1)l ,

гдеh – ,r – ,r1 – ,

l – длина

Формулы для объема, площади боковой и полной поверхности:

Sосн = πr2,

Sбок= πrl,

Sполн = πr2 + πrl,

гдеr – ,l – длина h –

Формулы для объема, площади боковой и полной поверхности:

,

Sбок= π (r + r1)l ,

гдеh – ,r – ,r1 – ,

l – длина

      Замечание 3. Формула для вычисления объема конуса

может быть получена из формулы объема правильной n – угольной пирамиды

при помощи предельного перехода, когда число сторон правильной пирамиды n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

      Замечание 4. Формула для вычисления объема усеченного конуса

может быть получена из формулы объема правильной усеченной n – угольной пирамиды

при помощи предельного перехода, когда число сторон правильной усеченной пирамиды n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.

Для чего используется конус

Мы подробно разобрали самые простые варианты как сделать правильный конус из бумаги. Для чего используется эта поделка? Направления у нее самые различные:

  • геометрических выставок;
  • объемных поделок;
  • изготовления маскарадных шляп.

Ваша фантазия подскажет вам, где еще может применяться конус. А мы поможем вам вдохновиться с помощью простой конусной поделки елочки.

Ёлка из конуса

Для нее потребуется:

  • картон;
  • бумага для подарков;
  • скотч;
  • декоративные предметы;
  • ножницы.

В основе изделия, как вы уже поняли, лежит конус. Изготовьте его по одной из предложенных выше инструкций.

Далее работаем по схеме:

  1. Полученный конус, оборачиваем бумагой для подарков. Крепим кончик материала к верхушке скотчем и аккуратно оборачиваем бумагу по фигуре. Отрезаем лишний материал.
  2. Крепим концы с помощью скотча.
  3. Вы не поверите, но елочка готова. Осталось ее украсить как настоящую. С этой целью могут подойти пуговицы, большие бусины и миниатюрные новогодние игрушки.

В ёлке можно сделать отверстия. И если она достаточно широка, поместите внутрь конуса новогодние огоньки. В темноте, они будут приятно мелькать, создавая приятную атмосферу.

https://ngeometry.ru/postroenie-razvertki-konusa.htmlhttps://stroyday.ru/kalkulyatory/obshhestroitelnye-voprosy/kalkulyatory-rascheta-razmerov-razvertki-konusa.htmlhttps://megamaster.info/kak-sdelat-konus-iz-bumagi/

От ровного листа до круглой обечайки:

Вальцы с асимметричным расположением валков (рис.11) производят практически полную гибку обечайки.

Наиболее современными являются четырехвалковые машины (рис.12), на которых за один цикл осуществляется вальцовка и подгибка краев. Радиус гибки обечаек проверяют шаблонами. Возможные дефекты вальцовки цилиндрических обечаек приведены на рис.14.

Конусы и переходные элементы в каждой прочности и качестве материала

В дополнении к шишкам и переходным частям, мы также производим раковины и доборные любого рода. Компоненты, которые не могут транспортироваться в одной части из-за их размер, мы производим, насколько это технически возможно в ряде сегментов, которые могут быть собраны на месте для получения готового продукта.

Высокая точность и надежность в технологии формирования — как раз вовремя

В производстве мы уделяем большое внимание выдающемуся качеству и точности. Существует много причин, по которым вам может понадобиться сделать конус с металлической фольгой. Металлические конусы служат для запирания дымовых труб, вплоть до определенных видов огня на открытом воздухе и во время барбекю, а иногда и в декоративных целях

Складывание листа металла проще, чем вы могли ожидать, поэтому не пугайтесь процесса

Металлические конусы служат для запирания дымовых труб, вплоть до определенных видов огня на открытом воздухе и во время барбекю, а иногда и в декоративных целях. Складывание листа металла проще, чем вы могли ожидать, поэтому не пугайтесь процесса

Введите его полностью, но с осторожностью, конечно

Также способы получения нужной формы бывают разные.

Гибка конических обечаек производится несколькими способами:

1) Установкой под углом среднего валка у симметричных трехвалковых машин и бокового валка у асимметричных трехвалковых и четырехвалковых вальцев (рис.15). 2) Гибкой по средней линии последовательно по различным участкам (рис.16) на вальцах. Сначала осуществляют подгибку кромок, затем гнут середину заготовки на каждом участке с переустановками. Такой способ приводит к повышенному износу оборудования.

3) Гибка обечаек на вальцах со сменными коническими валками. Этот способ оправдан в серийном и массовом производстве. 4) Безвальцевым способом для листа толщиной до 20 мм. На рис. 17 показан метод свертывания. Кромки 3 и 4 заготовки закрепляют в опорах 2 и 5, сводят друг к другу, одновременно поворачивают опоры в разных направлениях. Далее кромки конической обечайки соединяют на прихватках и снимают со станка. 5) Наиболее производительным способом является изготовление конических обечаек в штампах (рис.18). Перед сваркой частей обечаек производят их предварительную фиксацию для исключения деформации элементов и обеспечения сварочных зазоров. Совмещение кромок обычно производится струбцинами и сборочными кольцами для тонкого листа (рис.19). На одну обечайку устанавливается две струбцины по торцам.

Цилиндричность обечаек обеспечивается специальными приспособлениями с домкратами, распирающими деталь. При сборке габаритных деталей используются стяжные планки и клиновые соединения (рис.20).

Изготовление рабочего конуса на заказ

Карандаш будет рисовать круг, и небольшая выемка, которая оставила компас там, где она была поддержана, должна быть отмечена. 2 Отрежьте круг специальными ножницами из металлической фольги. Носите перчатки так, чтобы края металла были очень острыми. 3 Отрежьте круг пополам. Используя точку поддержки вашего компаса в качестве ориентира и в качестве конечной точки, разрежьте там прямую линию, начинающуюся с обоих концов. Теперь у вас будет круг металлической фольги с щелью, которая начнется с одной стороны и достигнет центра. 4 Перекройте одну сторону разреза над другой. Начиная с щели, надавите куски листа один поверх другого. При этом вы увидите, что круг начинает сжиматься и формировать конус. Остановитесь, когда это необходимо, в зависимости от того, насколько глубоко вы этого хотите. 5 Лента на каждой стороне оверлея. Это предотвратит перемещение металла и избавит вас от грубых краев. Теперь ваш конус металлического лезвия завершен. Носите перчатки всякий раз, когда вы манипулируете металлическим лезвием, чтобы не обрезать руки. Металлическое лезвие Ножницы для металлического лезвия Компас с карандашом Клейкая лента Перчатки. Установление определенных единообразных правил находит свое разумное значение в необходимости гарантировать в отношении всех профессий, подверженных сертификации, цели, требующиеся сертификатов профессионализма.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector