Конус, как напечатать картинку?

Содержание:

Как сделать конус из бумаги своими руками?

Материалы для создания полностью определяются тем, зачем делается конус. Самые простые варианты из обычного листа бумаги можно даже не склеивать – достаточно скрепить каким-нибудь зажимом. Если же предстоит соорудить красивую елочную игрушку или элемент декора, то лучше найти подходящую цветную бумагу или картон.

Для создания ровного конуса понадобится круглый лист.

Его можно сделать разными способами, например – вырезать из обычного, формата А4, обозначив требуемую зону циркулем. В случае, если циркуля под рукой не оказалось, стоит воспользоваться карандашом и веревкой. Нить должна равняться радиусу будущего круга. Её придерживают пальцем в центре листа в натянутом состоянии, а карандашом обводится окружность.

Как сделать конус из бумаги своими руками:

  • На готовом круге нужно начертить две линии, чтобы получится крест, разделяющий лист на четыре ровные части.
  • Затем одну из четвертей отрезают.
  • Остается лишь сложить нужную форму и закрепить её с помощью клея или прищепок.

После этого конус готов, но, при желании, можно сделать для него дно. Для этого получившуюся фигуру ставят на лист бумаги. По ней обводят круг, но перед вырезанием к форме добавляют ещё примерно сантиметр. Из этого расстояния нужно создать зубчики, с помощью которых дно будет крепиться к конусу. Их промазывают клеем и прикрепляют.

При работе с тонкой бумагой можно делать конус из обычного прямоугольного листа. Для этого он закручивается, как показано на фото ниже, а затем лишний край отрезается. Иногда его можно использовать для создания основы конуса, или же бывает достаточным просто загнуть его вовнутрь.

Развертка усеченного конуса .Подробное описание.

Развертка усеченного конуса является одним часто задаваемым заданием по инженерной графике для студентов в учебных заведениях.

Рассмотрим пошаговое построение с подробным описанием согласно этому заданию: дан конус высотой 120 мм и диаметром 100 мм. Необходимо провести линию сечения под углом 45 0 на расстоянии 60 мм от оси фигуры.

Приступим к выполнению:

1.) Чертим третий вид конуса;

2.) Разбиваем вид сверху на 12 составляющих частей. Это необходимо для построения развертки;

3.) Находим точки сечения на нижнем рисунке;

4.) Подписываем точки полученного сечения на видовых проекциях;

5.) Переносим точки сечения на третью проекцию (вид слева);

6.) Обводим толстыми видимыми линиями полученную фигуру;

7.) Строим развертку, если бы она не имела выреза. Отмеряется расстояние от вершины конуса до основания и от центральной оси чертится 12 участков;

8.) Обозначаем на развертке участки для лучшего представления о том где строить точки;

9.) Отмеряем расстояние на конусе (фронтальной проекции) циркулем и чертим таким же размером на развертке и подписываем  полученную точку. По такому принципу осуществляется нахождение точек на развертке;

10.) Обводим толстыми линиями чертежа полученную развертку усеченного конуса.

Вы также можете посмотреть видео:

ОБРАБОТКА КОНИЧЕСКИХ ПОВЕРХНОСТЕЙ

§ 1. Общие сведения 1. Область применения конусов. Наряду с цилиндрическими деталями в машиностроении получили довольно широкое распространение детали с коническими поверхностями. Примерами их могут служить конусы центров, хвостовиков сверл, зенкеров, разверток. Для крепления этих инструментов передние участки отверстий шпинделя и пиноли токарного станка имеют также коническую форму. Однако область использования конусов не ограничивается режущими инструментами. Конические поверхности имеют многие детали машин. Широкое использование конических соединений объясняется рядом их преимуществ. 1. Они обеспечивают высокую точность центрирования деталей. 2. При плотном соприкосновении пологих конусов получается неподвижное соединение. 3. Изменяя осевое положение деталей конического соединения, можно регулировать величину зазора между ними. 2. Конус и его элементы. Конус представляет собой геометрическое тело, поверхность которого получается вращением прямой линии (образующей), наклонно расположенной к оси вращения (рис. 129, а). Точка пересечения образующей с осью называется вершиной конуса. Плоскости, перпендикулярные к оси конуса, называются, основаниями. Различают полный и усеченный конусы. Первый расположен между основанием и вершиной, второй — между двумя основаниями (большим и меньшим). Конус характеризуется следующими элементами: диаметром большего основания D; диаметром меньшего основания d; длиной l; углом уклона а между образующей и осью конуса; углом конуса 2а между противоположными образующими. Кроме этого, на рабочих чертежах конических деталей часто употребляют понятия конусность и уклон. Конусностью называется отношение разности диаметров двух перечных сечений конуса к расстоянию между ними. Она опреляется по формуле Уклоном называется отношение разности радиусов двух поперечных сечений конуса к расстоянию между ними. Его определяют по формуле Из формул (9) и (10) видно, что уклон равен половине конусности. Тригонометрически уклон равен тангенсу угла уклона (см. рис. 129, б, треугольник ABC), т. е. На чертеже (рис. 130) конусность обозначают знаком <, а уклон —, острие которых направляется в сторону вершины конуса. После знака указывается отношение двух цифр. Первая из них соответствует разности диаметров в двух принятых сечениях конуса, вторая для конусности— расстояние между сечениями, для уклона — удвоенной величине этого расстояния. Конусность и уклон иногда записываются числами десятичной дроби: 6,02; 0,04; 0,1 и т. д. Для конусности эти цифры соответствуют разности диаметров конуса на длине 1 мм, для уклона — разности радиусов на этой же длине. Для обработки полного конуса достаточно знать два элемента: диаметр основания и длину; для усеченного конуса — три элемента: диаметры большего и меньшего оснований и длину. Вместо одного из указанных элементов может быть задан угол наклона а, уклон или конусность. В этом случае для определения недостающих размеров пользуются вышеприведенными формулами (9), (10) и (11). Пример 1. Дан конус, у которого d=30 мм, /=500 мм, К=1: 20. Определить больший диаметр конуса. Решение. Из формулы (9) Пример 2. Дан конус, у которого D=40 мм, l = 100 мм, а=5 , Определить меньший диаметр конуса. Решение. Из формулы (11) По таблице тангенсов находим tg5°=0,087. Следовательно, d=40—2*100Х Х0,87=22,6 мм. Пример 3. Определить угол уклона а, если на чертеже указаны размеры конуса: D—50 мм, d=30 мм, /=200 мм. Решение. По формуле (11) Из таблицы тангенсов находим а=2 50 . Пример 4. Дан конус, у которого D=60 мм, /=150 мм, К=1 : 50. Определить угол уклона а. Решение. Так как уклон равен половине конусности, можно записать: По таблице тангенсов находим а=0 30 . 3. Нормальные конусы. Конусы, размеры которых стандартизованы, называются нормальными. К ним относятся конусы Морзе, метрические, конусы для насадных разверток и зенкеров с конусностью 1:50 0, под конические штифты — с конусностью 1:50, для конических резьб с конусностью 1 : 16 и др. Наибольшее распространение в машиностроении получили инструментальные конусы Морзе и метрические, основные размеры которых приведены в табл. 13.

Размеры конусов Морзе выражаются дробными числами. Это объясняется тем, что впервые стандарт на них был принят в дюймовой системе измерения, которая сохранилась до настоящего времени. Конусы Морзе имеют различную конусность (примерно 1 20), метрические конусы одинаковую — 1:20. Автор — nastia19071991

Конус по шаблону

Шаблон для конуса

Если для будущей поделки вам нужна эта геометрическая фигура, но ни один из вышеперечисленных вариантов, описывающих как сделать нужный конус из бумаги вам не подошел, есть выход.

Что нужно для изготовления:

  • плотная бумага;
  • ПВА или скотч;
  • ножницы;
  • карандаш;
  • шаблон.

Приступаем к выполнению работы:

  • скачиваем шаблон, который мы подготовили и распечатываем его;
  • вы можете вырезать по шаблону заготовку или просто сразу использовать материал для конуса и распечатать шаблон на нем;
  • сворачиваем материал, края скрепляем удобным для вас способом (скотчем или ПВА клеем).

В процессе скрепления, обязательно следите за тем, чтобы нижние края оставались ровными. Для этого установите еще не собранный материал на стол и уже затем сгибайте. После склеивания. Проверьте ровно ли стоит фигура. Она не должна качаться.

Для чего используется конус

Мы подробно разобрали самые простые варианты как сделать правильный конус из бумаги. Для чего используется эта поделка? Направления у нее самые различные:

  • геометрических выставок;
  • объемных поделок;
  • изготовления маскарадных шляп.

Ваша фантазия подскажет вам, где еще может применяться конус. А мы поможем вам вдохновиться с помощью простой конусной поделки елочки.

Ёлка из конуса

Для нее потребуется:

  • картон;
  • бумага для подарков;
  • скотч;
  • декоративные предметы;
  • ножницы.

В основе изделия, как вы уже поняли, лежит конус. Изготовьте его по одной из предложенных выше инструкций.

Далее работаем по схеме:

  1. Полученный конус, оборачиваем бумагой для подарков. Крепим кончик материала к верхушке скотчем и аккуратно оборачиваем бумагу по фигуре. Отрезаем лишний материал.
  2. Крепим концы с помощью скотча.
  3. Вы не поверите, но елочка готова. Осталось ее украсить как настоящую. С этой целью могут подойти пуговицы, большие бусины и миниатюрные новогодние игрушки.

В ёлке можно сделать отверстия. И если она достаточно широка, поместите внутрь конуса новогодние огоньки. В темноте, они будут приятно мелькать, создавая приятную атмосферу.

https://ngeometry.ru/postroenie-razvertki-konusa.htmlhttps://stroyday.ru/kalkulyatory/obshhestroitelnye-voprosy/kalkulyatory-rascheta-razmerov-razvertki-konusa.htmlhttps://megamaster.info/kak-sdelat-konus-iz-bumagi/

Практическое применение

У школьников часто возникает вопрос о том, зачем учить, как рассчитывать объем разных геометрических тел, в том числе конуса.

А инженеры-конструкторы постоянно сталкиваются с необходимостью рассчитать объем конических частей деталей механизмов. Это наконечники сверл, части токарных и фрезерных станков. Форма конуса позволят сверлам легко входить в материал, не требуя первоначальной наметки специальным инструментом.

Объем конуса имеет куча песка или земли, высыпанная на землю. При необходимости, проведя несложные измерения, можно рассчитать ее объем. У некоторых вызовет затруднение вопрос о том, как узнать радиус и высоту кучи песка. Вооружившись рулеткой, измеряем окружность холмика C. По формуле R=C/2n узнаем радиус. Перекинув веревку (рулетку) через вершину, находим длину образующей. А вычислить высоту по теореме Пифагора и объем не составит труда. Конечно, такой расчет приблизителен, но позволяет определить, не обманули вас, привезя тонну песка вместо куба.

Некоторые здания имеют форму усеченного конуса. Например, Останкинская телебашня приближается к форме конуса. Ее можно представить состоящей из двух конусов, поставленных друг на друга. Купола старинных замков и соборов представляют собой конус, объем которого древние зодчие рассчитывали с удивительной точностью.

Если внимательно присмотреться к окружающим предметам, то многие из них являются конусами:

  • воронки-лейки для наливания жидкостей;
  • рупор-громкоговоритель;
  • парковочные конусы;
  • абажур для торшера;
  • привычная новогодняя елочка;
  • духовые музыкальные инструменты.

Как видно из приведенных примеров, умение рассчитать объем конуса, площадь его поверхности необходимо в профессиональной и повседневной жизни. Надеемся, что статья придет вам на помощь.

Что означает уклон в процентах, и как перевести его в градусы

Когда идет речь о кровле зданий, то под словом «уклон» подразумевают угол наклона оболочки крыши к горизонту. В геодезии данный параметр является показателем крутизны склона, а в проектной документации это степень отклонения прямых элементов от базовой линий. Уклон в градусах не вызывает ни у кого вопросов, а вот уклон в процентах порой вызывает замешательство. Пришла пора разобраться с этой единицей измерения, чтобы четко представлять себе, что это такое и, если потребуется, без особого труда переводить ее в другие единицы, например в те же градусы.

Расчет уклона в процентах

Попробуйте представить прямоугольный треугольник АВС, лежащей на одном из своих катетов АВ. Второй катет ВС будет направлен вертикально вверх, а гипотенуза АС образует с нижним катетом некий угол. Теперь нам предстоит немножко вспомнить тригонометрию и рассчитать его тангенс, который как раз и будет характеризовать уклон, образуемый гипотенузой треугольника с нижним катетом. Предположим, что катет АВ = 100 мм, а высота ВС = 36,4 мм. Тогда тангенс нашего угла будет равен 0,364, что по таблицам соответствует 20˚. Чему же тогда будет равен уклон в процентах? Чтоб перевести полученное значение в эти единицы измерения, мы просто умножаем значение тангенса на 100 и получаем 36,4%.

Как понимать угол уклона в процентах?

Если дорожный знак показывает 12%, то это означает, что на каждом километре такого подъема или спуска дорога будет подыматься (опускаться) на 120 метров. Чтобы перевести процентное значение в градусы, нужно попросту вычислить арктангенс этого значения и при необходимости перевести его из радиан в привычные градусы. То же самое касается и строительных чертежей. Если, к примеру, указывается, что угол уклона в процентах равен 1, то это означает, что соотношение одного катета к другому равно 0,01.

Почему не в градусах?

Многих наверняка интересует вопрос: «Зачем для уклона использовать еще какие-то проценты?» Действительно, почему бы просто не обойтись одними градусами. Дело в том, что при любых измерениях всегда имеет место некоторая погрешность. Если в проектной документации станут применять градусы, то неминуемо возникнут сложности с монтажом. Взять хотя бы ту же канализационную трубу. Погрешность в несколько градусов при длине в 4-5 метров может увести ее совершенно в другую от нужного положения сторону. Поэтому в инструкциях, рекомендациях и проектной документации обычно применяются проценты.

Применение на практике

Предположим, что проект строительства загородного дома предполагает устройство скатной кровли. Требуется проверить ее уклон в процентах и градусах, если известно, что высота конька составляет 3.45 метра, а ширина будущего жилища равна 10 метрам. Так как спереди крыша представляет собой равносторонний треугольник, то ее можно разделить на два прямоугольных треугольника, в которых высота конька будет являться одним из катетов. Второй катет находим, разделив ширину дома пополам. Теперь у нас есть все необходимые данные для расчета величины уклона. Получаем: atan-1(0.345) ≈ 19˚. Соответственно, уклон в процентах равен 34,5. Что нам это дает? Во-первых, мы можем сравнить это значение с рекомендуемыми специалистами параметрами, а во-вторых, свериться с требованиями СНиПа при выборе кровельного материала. Сверившись со справочниками, можно выяснить, что для укладки натуральной черепицы такой уровень наклона будет слишком малым (минимальный уровень равен 33 градусам), зато такой крыше не страшны мощные порывы ветра.

В чем измеряется угол уклона крыши

  Обозначение уклона кровли на чертежах может быть как в градусах, так и в процентах. Уклон крыши обозначается латинской буквой i.

  В СНиПе II-26-76, данная величина указывается в процентах ( % ). В данный момент не существует строгих правил по обозначению размера уклона крыши.

  Единицей измерения уклона крыши считают градусы или проценты ( %). Их соотношение указаны ниже в таблице.

Уклон крыши соотношение градусы-проценты

градусы % градусы % градусы %
1,75% 16° 28,68% 31° 60,09%
3,50% 17° 30,58% 32° 62,48%
5,24% 18° 32,50% 33° 64,93%
7,00% 19° 34,43% 34° 67,45%
8,75% 20° 36,39% 35° 70,01%
10,51% 21° 38,38% 36° 72,65%
12,28% 22° 40,40% 37° 75,35%
14,05% 23° 42,45% 38° 78,13%
15,84% 24° 44,52% 39° 80,98%
10° 17,64% 25° 46,64% 40° 83,90%
11° 19,44% 26° 48,78% 41° 86,92%
12° 21,25% 27° 50,95% 42° 90,04%
13° 23,09% 28° 53,18% 43° 93,25%
14° 24,94% 29° 55,42% 44° 96,58%
15° 26,80% 30° 57,73% 45° 100%

  Перевести уклон из процентов в градусы и наоборот из градусов в проценты можно при помощи онлайн конвертера:

Замер уклона крыши

  Измеряют угол уклона при помощи уклономера или же математическим способом.

  Уклономер – это рейка с рамкой, между планками которой есть ось, шкала деления и к которой закреплён маятник. Когда рейка находится в горизонтальном положении, на шкале показывает ноль градусов. Чтобы произвести замер уклона ската крыши, рейку уклономера держат перпендикулярно коньку, то есть в вертикальном уровне. По шкале уклономера маятник указывает, какой уклон у данного ската крыши в градусах. Такой метод замера уклона стал уже менее актуален, так как сейчас появились разные геодезические приборы для замеров уклонов, а так же капельные и электронные уровни с уклономерами.

Математический расчёт уклона

  Можно рассчитать уклон крыши не используя геодезические и другие приборы для замеров уклона. Для этого необходимо знать два размера:

  • Вертикальная высота ( H ) от верхней точки ската (как правило конька) до уровня нижней (карниза)
  • Заложение ( L ) – горизонтальное расстояние от нижней точки ската до верхней

  При помощи математического расчёта величину уклона крыши находит следующим образом:

Угол уклона ската i равен отношению высоты кровли Н к заложению L

i = Н : L

  Для того, чтобы значение уклона выразить в процентах, это отношение умножают на 100. Далее,чтобы узнать значение уклона в градусах, переводим по таблице соотношений, расположенной выше.

  Чтобы было понятней рассмотрим на примере:

Пусть будет:

Длина заложения 4,5 м, высота крыши 2,0 м.

Уклон равен: i = 2.0 : 4,5 = 0,44 теперь умножим на × 100 = 44 %. Переводим данное значение по таблице в градусы и получаем – 24°.

Минимальный уклон для кровельных материалов (покрытий)

Вид кровли Минимальный уклон крыши
в градусах в % в соотношении высоты ската к заложению
Кровли из рулонных битумных материалов: 3-х и 4-х слойные (наплавляемая кровля) 0-3° до 5% до 1:20
Кровли из рулонных битумных материалов: 2-х слойные (наплавляемая кровля) от 15
Фальцевая кровля от 4°
Ондулин 1:11
Волнистые асбоцементные листы (шифер) 16 1:6
Керамическая черепица 11° 1:6
Битумная черепица 11° 1:5
Металлочерепица 14°
Цементно-песчанная черепица 34° 67%
Деревянная кровля 39° 80% 1:1.125

Калькуляторы расчета размеров развертки конуса — с пояснениями

Иногда в ходе выполнения тех или иных хозяйственных работ мастер встаёт перед проблемой изготовления конуса – полного или усеченного. Это могут быть операции, скажем, с тонким листовым металлом, эластичным пластиком, обычной тканью или даже бумагой или картоном. А задачи встречаются самый разные – изготовление кожухов, переходников с одного диаметра на другой, козырьков или дефлекторов для дымохода или вентиляции, воронок для водостоков, самодельного абажура. А может быть даже просто маскарадного костюма для ребенка или поделок, заданных учителем труда на дом.

Калькуляторы расчета размеров развертки конуса

Чтобы из плоского материала свернуть объёмную фигуру с заданными параметрами, необходимо вычертить развертку. А для этого требуется рассчитать математически и перенести графически необходимые точные размеры этой плоской фигуры. Как это делается – рассмотрим в настоящей публикации. Помогут нам в этом вопросе калькуляторы расчета размеров развертки конуса.

Несколько слов о рассчитываемых параметрах

Понять принцип расчета будет несложно, разобравшись со следующей схемой:

Усеченный конус с определяющими размерами и его развёртка. Показан усеченный конус, но с полным — принцип не меняется, а расчеты и построение становятся даже проще.

Итак, сам конус определяется радиусами оснований (нижней и верхней окружности) R1 и R2, и высотой Н. Понятно, что если конус не усеченный, то R2 просто равно нулю.

Буквой L обозначена длина боковой стороны (образующей) конуса. Она в некоторых случаях уже известна – например, требуется сделать конус по образцу или выкроить материал для обтяжки уже имеющегося каркаса. Но если она неизвестна – не беда, ее несложно рассчитать.

Справа показана развёртка. Она для усеченного конуса ограничена сектором кольца, образованного двумя дугами, внешней и внутренней, с радиусами Rb и Rs. Для полного конуса Rs также будет равен нулю. Хорошо видно, что Rb = Rs + L

Угловую длину сектора определяет центральный угол f, который в любом случае предстоит рассчитать.

Все расчеты займут буквально минуту, если воспользоваться предлагаемыми калькуляторами:

(Если она уже известна – шаг пропускается)

Перейти к расчётам

Шаг 3 – определение величины центрального угла f

Перейти к расчётам

* * * * * * *

Итак, все данные имеются. Остается на листе бумаги циркулем провести две дуги рассчитанных радиусов. А затем из точки центра с помощью транспортира прочертить два луча под рассчитанным углом – они ограничат развертку по угловой длине.

Существуют и чисто геометрические методы построения довольно точной развертки конуса, без проведения расчётов. Один из них подробно описан в статье нашего портала «Как сделать абажур своими руками».

stroyday.ru

Таблицы выбора диаметра сверла под резьбу

При выполнении внутренней резьбы под нее предварительно сверлится отверстие. Оно не равно диаметру резьбы, так как при нарезании часть материала не удаляется в виде стружки, а выдавливается, увеличивая размер выступов. Потому перед нанесением необходимо выбрать диаметр сверла под резьбу. Это можно сделать по таблицам. Они есть для каждого типа резьбы, но приведем наиболее популярные — метрическую, дюймовую, трубную.

Метрическая резьба Дюймовая резьба Трубная резьба
Диаметр резьбы, дюймы Шаг резьбы, мм Диаметр сверла, мм Диаметр резьбы, дюймы Шаг резьбы, мм Диаметр сверла, мм Диаметр резьбы, дюймы Диаметр отверстия под резьбу, мм
M1 0.25 0,75 3/16 1.058 3.6 1/8 8,8
M1,4 0,3 1,1 1/4 1.270 5.0 1/4 11,7
M1.7 0,35 1,3 5/16 1.411 6.4 3/8 15,2
M2 0,4 1,6 3/8 1.588 7.8 1/2 18,6
M2.6 0,4 2,2 7/16 1.814 9.2 3/4 24,3
M3 0,5 2,5 1/2 2,117 10,4 1 30,5
M3,5 0,6 2,8 9/16 2,117 11,8
M4 0,7 3,3 5/8 2,309 13,3 11/4 39,2
M5 0,8 4,2 3/4 2,540 16,3 13/8 41,6
M6 1,0 5,0 7/8 2,822 19,1 11/2 45,1
M8 1,25 6,75 1 3,175 21,3
M10 1,5 8,5 11/8 3,629 24,6
M12 1,75 10,25 11/4 3,629 27,6
M14 2,0 11,5 13/8 4,233 30,1
M16 2,0 13,5
M18 2,5 15,25 11/2 4,33 33,2
M20 2,5 17,25 15/8 6,080 35,2
M22 2,6 19 13/4 5,080 34,0
M24 3,0 20,5 17/8 5,644 41,1

Еще раз обращаем ваше внимание что диаметр сверла под резьбу дан для крупной (стандартной резьбы)

Другие конусы, применяемые в машиностроении

Конусность 1:50 имеют установочные штифты, применяемые при необходимости дополнительного скрепления двух деталей, зафиксированных резьбовым соединением, чтобы они не могли перемещаться одна относительно другой. Установочные штифты вставляются в отверстия, просверленные и конически развернутые одновременно в обеих деталях, после их сборки. Конусность 1:50 соответствует углу уклона 0°34′.

Конус 1:16

Резьба обсадных труб 6 5/8″, бурильных и насосно-компрессорных труб, резьба трубная коническая общего назначения.

Конус 1:10

Концы валов электрических и других машин и соответствующие им муфты. ГОСТ 12081-72.

Центры упорные и конусы инструментов для тяжелых станков. ГОСТ 7343—72.

Отверстия под заклепки в котельных листах, мостовых и корабельных конструкциях (т. н. котельный конус).

Конус 1:1,866

Центры станков, центровые отверстия, потайные и полупотайные головки заклёпок диаметром 16—25 мм, потайные головки винтов диаметром 22—24 мм.

Техника папье-маше

Этот раздел также научит, как сделать конус из бумаги для елки

Большой или маленький вам нужен размер, в данном случае неважно. Заготовка получается прочной и твердой даже без дополнительного каркаса. Этот вариант подойдет тем, у кого нет единого плотного листа для изготовления конуса соответствующего размера

Этот вариант подойдет тем, у кого нет единого плотного листа для изготовления конуса соответствующего размера.

Для работы этим методом подойдет любая бумага, даже газетная или от старых журналов, однако, потребуется основа-заготовка. Можно воспользоваться пластиковым конусом от детского конструктора (исходная деталь не испортится и вернется на место), пластилином, гипсом, пенопластом. По одному шаблону вы сможете сделать много заготовок из папье-маше. Действуйте так:

  1. Нарежьте или нарвите газеты на мелкие элементы.
  2. Оберните подготовленный шаблон полиэтиленовой пленкой и обмажьте ПВА.
  3. На невысохший клей нанесите слой бумажных кусочков.
  4. Просушите первый слой и после нанесите второй по той же технологии.
  5. Работайте так до необходимой толщины заготовки.
  6. Разрежьте получившийся панцирь и извлеките исходную деталь.
  7. Установите стержень-каркас, если нужно.
  8. Нанесите еще несколько слоев для скрепления половинок.

Все готово.

Вы узнали, как сделать конус из бумаги для елки. Начинайте с изготовления основы, а затем приступайте к ее декорированию.

Для новогоднего оформления квартиры очень хорошо подходят маленькие ёлочки из подручных материалов. Один из главных плюсов таких ёлочек – простота изготовления и широкое поле для фантазии при их украшении. Кроме того, таких ёлочек можно сделать сразу много – разных по виду и украшению и расставить по всей квартире, таким образом, оригинально украсив её. Проще всего сделать ёлочку-конус из бумаги. На специализированных сайтах есть множество идей украшения таких ёлок, к которым Вы всегда сможете добавить свою авторскую выдумку. При всём разнообразии моделей, основа у всех ёлочек одна – конус из бумаги или картона.

Усеченный геометрический объект

Усеченная фигура представляет собой объект в пространстве, который состоит из двух оснований разной площади и конической боковой поверхности. В отличие от исходного конуса, его усеченный вариант не имеет вершины. Остальные линейные элементы для него такие же, как для конуса с вершиной. У усеченной фигуры также имеется две директрисы, ограничивающие каждое из оснований, и одна генератриса, которая опирается на линии направляющих кривых.

Рассматриваемый геометрический объект также бывает нескольких видов (эллиптический, наклонный). Чаще всего в задачах по геометрии встречается именно круглый прямой усеченный конус, который ограничен двумя круглыми основаниями.

Способы построения

Можно выделить два основных способа построения усеченного круглого геометрического объекта:

  • из круглого прямого конуса;
  • с помощью трапеции.

В первом случае необходимо взять коническую фигуру и режущую плоскость, которая будет параллельна основанию. После этого с помощью плоскости следует отсечь верхнюю часть конуса. Оставшаяся под плоскостью фигура будет усеченной

Следует отметить, что совершенно неважно, какая часть конуса с вершиной будет отсечена. Чем больше она будет, тем ближе окажутся друг к другу значения верхнего и нижнего радиусов в усеченной фигуре, то есть тем ближе она по форме будет походить на прямой цилиндр.

Если прямоугольную трапецию поставить на большее основание и вращать ее вокруг перпендикуляра h, то получится усеченный конус. В нем отрезки a и b будут радиусами оснований объемной фигуры, перпендикуляр h станет высотой, а наклонный отрезок g будет представлять собой длину образующей. Эти четыре линейных характеристики определяют рассматриваемую объемную фигуру. Следует заметить, что для однозначного построения фигуры достаточно лишь трех любых из них, например, высоты и двух радиусов.

Площадь поверхности

Поверхность усеченной фигуры, в отличие от полного конуса, образована тремя частями: два круглых основания и боковая поверхность. Площади круглых оснований вычисляются по известной формуле для круга: pi*r2. Для боковой поверхности следует выполнить следующие действия:

Разрезать ее вдоль образующей и развернуть на плоскости.
Обратить внимание, что полученная фигура представляет собой сектор круга, у которого в верхней его части вырезан другой маленький сектор.
Достроить мысленно усеченную фигуру до полного конуса и определить его высоту H и директрису G. Через соответствующие параметры усеченного конуса они будут выражаться следующим образом: G = r1*g/(r1-r2), H = h*r1/(r1-r2), здесь радиусы оснований r1 и r2 такие, что r1>r2.
Рассчитать площади большого и маленького круговых секторов, а затем вычесть из первой вторую

В итоге получится следующая простая формула: Sb = pi*g*(r1 + r2).

Площадь всей поверхности рассматриваемой фигуры вычисляется как сумма трех величин S1, S2 и Sb:

S = S1 + S2 + Sb = pi*r12 + pi*r22 + pi*g*(r1 + r2).

Для определения величины S необходимо знать три линейных параметра усеченного конуса: радиусы оснований и длину генератрисы.

Формула объема

Для определения объема следует воспользоваться приемами, подобными тем, которые описаны в методике определения площади поверхности. Для начала следует усеченный конус достроить до полного, затем вычислить объемы фигур с высотами H и H-h по уже известной формуле. Разница этих объемов даст искомую формулу для усеченной фигуры с круглыми основаниями:

V = 1/3*pi*r12*H — 1/3*pi*r22*(H-h).

Подставляя в это выражение равенство для высоты H через линейные характеристики усеченной фигуры, можно получить конечную формулу:

V = 1/3*pi*h*(r12 + r22 + r1*r2).

Это выражение можно переписать не через линейные параметры, а через площади оснований фигуры S1 и S2:

V = 1/3*h*(S1 + S2 + (S1*S2)^0,5).

Записанная формула объема может быть получена универсальным способом без привлечения известного выражения для полного конуса. Для этого необходимо использовать интегральное исчисление, разбивая при этом усеченный геометрический объект на бесконечное количество тонких круглых дисков. Их радиусы будут постепенно уменьшаться от r1 до r2. Этот метод вывода формулы для объема не отличается от аналогичного для полного круглого конуса, изменяются лишь пределы интегрирования.

Решение задачи

Даже простая задача о том, как изготовить ведро определенного объема, требует знаний. Например, необходимо рассчитать размеры ведра, чтобы оно имело объем 10 литров.

Дано:

V=10 л=10 дм3;

R1=15 см;

R2=25 см.

Развертка конуса имеет вид, схематически приведенный на рисунке 3.

L — образующая конуса.

Чтобы узнать площадь поверхности ведра, которая вычисляется по следующей формуле:

S=n*(R1+R2)*L,

необходимо вычислить образующую. Ее находим из величины объема V=n*(R12+R22+R1*R2)*H/3.

Отсюда H=3V/n*(R12+R22+R1*R2).

Усеченный конус образуется вращением прямоугольной трапеции, в которой боковая сторона является образующей конуса.

L2=(R2-R1)2+H2.

Теперь у нас имеются все данные, чтобы построить чертеж ведра.

Обозначение конусности на чертеже

При создании технической документации должны учитываться все установленные стандарты, так как в противном случае она не может быть использована в дальнейшем

Рассматривая обозначение конусности на чертежах следует уделить внимание следующим моментам:

  1. Отображается диаметр большого основания. Рассматриваемая фигура образуется телом вращения, которому свойственен диаметральный показатель. В случае конуса их может быть несколько, а изменение показателя происходит плавно, не ступенчато. Как правило, у подобной фигуры есть больший диаметр, а также промежуточной в случае наличия ступени.
  2. Наносится диаметр меньшего основания. Меньшее основание отвечает за образование требуемого угла.
  3. Рассчитывается длина конуса. Расстояние между меньшим и большим основанием является показателем длины.
  4. На основании построенного изображения определяется угол. Как правило, для этого проводятся соответствующие расчеты. В случае определения размера по нанесенному изображению при применении специального измерительного прибора существенно снижается точность. Второй метод применяется в случае создания чертежа для производства неответственных деталей.

Простейшее обозначение конусности предусматривает также отображения дополнительных размеров, к примеру, справочную. В некоторых случаях применяется знак конусности, который позволяет сразу понят о разности диаметров.

Выделяют достаточно большое количество различных стандартов, которые касаются обозначения конусности. К особенностям отнесем следующее:

  1. Угол может указываться в градусах дробью или в процентах. Выбор проводится в зависимости от области применения чертежа. Примером можно назвать то, что в машиностроительной области указывается значение градуса.
  2. В машиностроительной области в особую группу выделяют понятие нормальной конусности. Она варьирует в определенном диапазоне, может составлять 30, 45, 60, 75, 90, 120°. Подобные показатели свойственны большинству изделий, которые применяются при сборке различных механизмов. При этом выдержать подобные значения намного проще при применении токарного оборудования. Однако, при необходимости могут выдерживаться и неточные углы, все зависит от конкретного случая.
  3. При начертании основных размеров применяется чертежный шрифт. Он характеризуется довольно большим количеством особенностей, которые должны учитываться. Для правильного отображения используется табличная информация.
  4. Для начала указывается значок конусности от которого отводится стрелка и отображается величина. Особенности отображения во многом зависит от того, какой чертеж. В некоторых случаях наносится большое количество различных размеров, что существенно усложняет нанесение конусности. Именно поэтому предусмотрена возможность использования нескольких различных методов отображения подобной информации.

На чертеже рассматриваемый показатель обозначается в виде треугольника. При этом требуется цифровое значение, которое может рассчитываться при применении различных формул.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector